1
|
Liu Y, Liu Z, Hui Y, Wang L, Zhang J, Yi X, Chen W, Wang C, Wang H, Qin Y, Song L, Zheng A, Xiao FS. Rhodium nanoparticles supported on silanol-rich zeolites beyond the homogeneous Wilkinson's catalyst for hydroformylation of olefins. Nat Commun 2023; 14:2531. [PMID: 37137908 PMCID: PMC10156763 DOI: 10.1038/s41467-023-38181-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
Hydroformylation is one of the largest industrially homogeneous processes that strongly relies on catalysts with phosphine ligands such as the Wilkinson's catalyst (triphenylphosphine coordinated Rh). Heterogeneous catalysts for olefin hydroformylation are highly desired but suffer from poor activity compared with homogeneous catalysts. Herein, we demonstrate that rhodium nanoparticles supported on siliceous MFI zeolite with abundant silanol nests are very active for hydroformylation, giving a turnover frequency as high as ~50,000 h-1 that even outperforms the classical Wilkinson's catalyst. Mechanism study reveals that the siliceous zeolite with silanol nests could efficiently enrich olefin molecules to adjacent rhodium nanoparticles, enhancing the hydroformylation reaction.
Collapse
Affiliation(s)
- Yifeng Liu
- Key Lab of Applied Chemistry of Zhejiang Province and Department of Chemistry & Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhiqiang Liu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics and Mathematics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yu Hui
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Fushun, 113001, China
| | - Liang Wang
- Key Lab of Applied Chemistry of Zhejiang Province and Department of Chemistry & Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jian Zhang
- Beijing Advanced Innovation Center for Soft Matter, Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xianfeng Yi
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics and Mathematics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wei Chen
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics and Mathematics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Chengtao Wang
- Key Lab of Applied Chemistry of Zhejiang Province and Department of Chemistry & Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hai Wang
- Key Lab of Applied Chemistry of Zhejiang Province and Department of Chemistry & Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yucai Qin
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Fushun, 113001, China
| | - Lijuan Song
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Fushun, 113001, China
| | - Anmin Zheng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics and Mathematics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Feng-Shou Xiao
- Key Lab of Applied Chemistry of Zhejiang Province and Department of Chemistry & Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Beijing Advanced Innovation Center for Soft Matter, Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
2
|
Yang Y, Ibikunle IA, Sava Gallis DF, Sholl DS. Adapting UFF4MOF for Heterometallic Rare-Earth Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54101-54110. [PMID: 36399402 DOI: 10.1021/acsami.2c16726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Heterometallic metal-organic frameworks based on rare-earth metals (RE-MOFs) have potential in a number of applications where energy transfer between nearby metal atoms is required. This observation implies that it is important to understand the level of local mixing that is achieved between metals of different types during synthesis of RE-MOFs. Density functional theory calculations can give quantitative information on the relative energy of different configurations of RE-MOFs, but these calculations cannot be applied to the full range of medium- and long-range orderings that are possible in heterometallic materials. This limitation can be overcome using force field (FF)-based calculations if appropriate FFs are available. We show that an existing generic FF for MOFs, UFF4MOF, does not accurately predict energies of mixing in heterometallic Nd/Yb MOFs and introduce a modified FF to address this shortcoming. The resulting FF is used to explore metal orderings in large simulation volumes for a Nd/Yb MOF, illustrating the complexities that can arise in the structure of heterometallic RE-MOFs.
Collapse
Affiliation(s)
- Yuhan Yang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Ifayoyinsola A Ibikunle
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Dorina F Sava Gallis
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - David S Sholl
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|