1
|
Yu Y, Zhang L, Wang B, Zhao J, Han K, Qi Y, Li J, Wang X, Sun B, Zhang J, Cao J, Ma B, Peng X, Cao J, Ke Y, Wang W. Synergistic π-Tunnel Clamps in β-Sheets for Long-Range Dry-State Conduction: Toward Neural Restoration. J Am Chem Soc 2025; 147:11049-11061. [PMID: 40129037 DOI: 10.1021/jacs.4c16008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The ordered arrangement of π-π networks within nanostructures is advantageous for the construction of artificial electronic transport (ETp) systems. Building such structures with biocompatible peptides offers a potential for prescribed structural addressability and enhanced ETp capability with implications for targeted neural tissue engineering. However, creating ordered π-π tunnels in peptide nanostructures composed entirely of natural amino acids presents challenges resulting from the flexible side chains and the free movement of aromatic residues, causing unpredictable orientation. In this study, a novel peptide nanostructure was constructed through rational design and high-throughput screening leveraging hierarchical β-sheets to achieve molecular programmability. Precise regulation of key residues at the aromatic-hydrophilic junctions within the peptide chain facilitated the transition from single interaction forces (hydrophobic or hydrogen bonding) to synergistic forces, enabling the formation of supramolecular clamps during the lateral stacking of β-sheets. The clamps compel the torsion-angle alternation between aromatic residues and the β-plane, increasing the stacking order of aromatic rings and reducing the π-π distance in the optimized RT peptide system. The RT system promotes the formation of an orderly delocalized electron tunnel, achieving dry-state molecular conductivity composed entirely of natural amino acids. Besides ETp, the RT system also provides neural-targeting capability, flexibility, and mechanical strength, allowing it to support axon elongation and neural restoration, serving as an advanced neuro-electronic interface.
Collapse
Affiliation(s)
- Yao Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
- China FAW Group Co. Ltd, National Key Laboratory of Advanced Vehicle Integration & Control, Changchun 130013, PR China
| | - Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Bo Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jinge Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Kai Han
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Ying Qi
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jiaqing Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xin Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Beilei Sun
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jian Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jingtian Cao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Bokai Ma
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, PR China
| | - Xubiao Peng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jie Cao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yubin Ke
- China Spallation Neutron Source, Dongguan 523803, PR China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
2
|
Bhunia S, Mukherjee M, Purkayastha P. Fluorescent metal nanoclusters: prospects for photoinduced electron transfer and energy harvesting. Chem Commun (Camb) 2024; 60:3370-3378. [PMID: 38444358 DOI: 10.1039/d4cc00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Research on noble metal nanoclusters (MNCs) (elements with filled electron d-bands) is progressing forward because of the extensive and extraordinary chemical, optical, and physical properties of these materials. Because of the ultrasmall size of the MNCs (typically within 1-3 nm), they can be applied in areas of nearly all possible scientific domains. The greatest advantage of MNCs is the tunability that can be imposed, not only on their structures, but also on their chemical, physical, and biological properties. Nowadays, MNCs are very effectively used as energy donors and acceptors under suitable conditions and hence act as energy harvesters in solar cells, semiconductors, and biomarkers. In addition, ultrafast photoinduced electron transfer (PET) can be practised using MNCs under various circumstances. Herein, we have focused on the energy harvesting phenomena of Au-, Ag-, and Cu-based MNCs and elaborated on different ways to apply them.
Collapse
Affiliation(s)
- Soumyadip Bhunia
- Institute of Chemistry, The Hebrew University of Jerusalem, 9190401, Israel.
| | - Manish Mukherjee
- Department of Chemistry & Biochemistry, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Pradipta Purkayastha
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, WB, India.
| |
Collapse
|
3
|
Orieshyna A, Puetzer JL, Amdursky N. Proton Transport Across Collagen Fibrils and Scaffolds: The Role of Hydroxyproline. Biomacromolecules 2023; 24:4653-4662. [PMID: 37656903 DOI: 10.1021/acs.biomac.3c00326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Collagen is one of the most studied proteins due to its fundamental role in creating fibrillar structures and supporting tissues in our bodies. Accordingly, collagen is also one of the most used proteins for making tissue-engineered scaffolds for various types of tissues. To date, the high abundance of hydroxyproline (Hyp) within collagen is commonly ascribed to the structure and stability of collagen. Here, we hypothesize a new role for the presence of Hyp within collagen, which is to support proton transport (PT) across collagen fibrils. For this purpose, we explore here three different collagen-based hydrogels: the first is prepared by the self-assembly of natural collagen fibrils, and the second and third are based on covalently linking between collagen via either a self-coupling method or with an additional cross-linker. Following the formation of the hydrogel, we introduce here a two-step reaction, involving (1) attaching methanesulfonyl to the -OH group of Hyp, followed by (2) removing the methanesulfonyl, thus reverting Hyp to proline (Pro). We explore the PT efficiency at each step of the reaction using electrical measurements and show that adding the methanesulfonyl group vastly enhances PT, while reverting Hyp to Pro significantly reduces PT efficiency (compared with the initial point) with different efficiencies for the various collagen-based hydrogels. The role of Hyp in supporting the PT can assist in our understanding of the physiological roles of collagen. Furthermore, the capacity to modulate conductivity across collagen is very important to the use of collagen in regenerative medicine.
Collapse
Affiliation(s)
- Anna Orieshyna
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Jennifer L Puetzer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
4
|
Nandi R, Orieshyna A, Amdursky N. Molecular-Doped Protein-Based Elastomers as a Versatile Platform for Energy-Transfer Studies and Emissive Down-Converting Polymers for Light-Emitting Applications. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37486807 DOI: 10.1021/acsami.3c05839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Much effort is being employed for designing "green" environmental emissive materials that are capable of color-tuning, i.e., down-converting the emission, and white-light generation (WLG). Here, we introduce a protein-based elastomer that can noncovalently bind a variety of chromophores while preventing their aggregation. Such binding capabilities are unique to the albumin-based materials that we use here in a process we refer to as "molecular doping". In the first part of this study, we explore the energy transfer across five different chromophores within the protein matrix, where the closely packed chromophore organization enables high energy-transfer efficiencies among them. In the second part, we show the easy control of blue, green, and red chromophores within the biopolymer, resulting in tunable emission properties of the film and WLG. The highly affordable chosen protein and the straightforward molecular doping strategy make our protein elastomers an attractive choice for an emissive material, as either a scaffold for investigating energy transfer in proteins or possible integration in light-emitting applications.
Collapse
Affiliation(s)
- Ramesh Nandi
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Anna Orieshyna
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
5
|
Arcudi F, Đorđević L. Supramolecular Chemistry of Carbon-Based Dots Offers Widespread Opportunities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300906. [PMID: 37078923 DOI: 10.1002/smll.202300906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Carbon dots are an emerging class of nanomaterials that has recently attracted considerable attention for applications that span from biomedicine to energy. These photoluminescent carbon nanoparticles are defined by characteristic sizes of <10 nm, a carbon-based core and various functional groups at their surface. Although the surface groups are widely used to establish non-covalent bonds (through electrostatic interactions, coordinative bonds, and hydrogen bonds) with various other (bio)molecules and polymers, the carbonaceous core could also establish non-covalent bonds (ππ stacking or hydrophobic interactions) with π-extended or apolar compounds. The surface functional groups, in addition, can be modified by various post-synthetic chemical procedures to fine-tune the supramolecular interactions. Our contribution categorizes and analyzes the interactions that are commonly used to engineer carbon dots-based materials and discusses how they have allowed preparation of functional assemblies and architectures used for sensing, (bio)imaging, therapeutic applications, catalysis, and devices. Using non-covalent interactions as a bottom-up approach to prepare carbon dots-based assemblies and composites can exploit the unique features of supramolecular chemistry, which include adaptability, tunability, and stimuli-responsiveness due to the dynamic nature of the non-covalent interactions. It is expected that focusing on the various supramolecular possibilities will influence the future development of this class of nanomaterials.
Collapse
Affiliation(s)
- Francesca Arcudi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| | - Luka Đorđević
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| |
Collapse
|
6
|
Ghorai N, Bhunia S, Burai S, Ghosh HN, Purkayastha P, Mondal S. Ultrafast insights into full-colour light-emitting C-Dots. NANOSCALE 2022; 14:15812-15820. [PMID: 36255011 DOI: 10.1039/d2nr04642c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Designing carbon dots (C-Dots) in a controlled way requires a profound understanding of their photophysical properties, such as the origin of their fluorescence and excitation wavelength-dependent emission properties, which has been a perennial problem in the last few decades. Herein, we synthesized three different C-Dots (blue, green, and red-emitting C-Dots) from the same starting materials via a hydrothermal method and separated them by silica column chromatography. All the purified C-Dots exhibited three different emission maxima after a certain range of different excitations, showing a high optical uniformity in their emission properties. It was also observed that the average distributions of the particle size in all the C-Dots were the same with a typical size of 4 nm and the same interplanar d spacing of ∼0.21 nm. Here, we tried to establish a well-defined conclusive answer to the puzzling optical properties of C-Dots via successfully investigating the carrier dynamics of their core and surface state with a myriad use of steady-state, time-resolved photoluminescence, and ultrafast transient absorbance spectroscopy techniques. The ultrafast charge-carrier dynamics of the core and surface state clearly indicated that the graphitic nitrogen in the core state and the oxygen-containing functional group in the surface state predominately contribute to controlling their wide range of emission properties. We believe that these findings will give the C-Dots their own designation in the fluorophore world and create a new avenue for designing and developing C-Dot-based new architectures.
Collapse
Affiliation(s)
- Nandan Ghorai
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Soumyadip Bhunia
- Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, WB, India
| | - Subham Burai
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna, Maharashtra 431203, India.
| | - Hirendra N Ghosh
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
- Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Pradipta Purkayastha
- Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, WB, India
| | - Somen Mondal
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna, Maharashtra 431203, India.
| |
Collapse
|