1
|
Zhang J, Zhang K, Wang K, Wang B, Zhu S, Qian H, Ma Y, Zhang M, Liu T, Chen P, Shen Y, Fu Y, Fang S, Zhang X, Zou P, Deng W, Mu Y, Chen Z. A palette of bridged bicycle-strengthened fluorophores. Nat Methods 2025:10.1038/s41592-025-02693-4. [PMID: 40389608 DOI: 10.1038/s41592-025-02693-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/03/2025] [Indexed: 05/21/2025]
Abstract
Organic fluorophores are the keystone of advanced biological imaging. The vast chemical space of fluorophores has been extensively explored in search of molecules with ideal properties. However, within the current molecular constraints, there appears to be a trade-off between high brightness, robust photostability, and tunable biochemical properties. Herein we report a general strategy to systematically boost the performance of donor-acceptor-type fluorophores, such as rhodamines, by leveraging SO2 and O-substituted azabicyclo[3.2.1] octane auxochromes. These bicyclic heterocycles give rise to a collection of 'bridged' dyes (BD) spanning the ultraviolet and visible range with top-notch quantum efficiencies, enhanced water solubility, and tunable cell-permeability. Notably, these azabicyclic fluorophores showed remarkable photostability compared to their tetramethyl or azetidine analogs while being completely resistant to oxidative photoblueing. Functionalized BD dyes are tailored for applications in single-molecule imaging, super-resolution imaging (STED and SIM) in fixed or live mammalian and plant cells, and live zebrafish imaging and chemogenetic voltage imaging.
Collapse
Affiliation(s)
- Junwei Zhang
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, State Key Laboratory of Membrane Biology, Peking University, Beijing, China
| | - Kecheng Zhang
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, State Key Laboratory of Membrane Biology, Peking University, Beijing, China
| | - Kui Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Bo Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
| | - Siyan Zhu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Hongping Qian
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | | | - Mengling Zhang
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, State Key Laboratory of Membrane Biology, Peking University, Beijing, China
| | - Tianyan Liu
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, State Key Laboratory of Membrane Biology, Peking University, Beijing, China
| | - Peng Chen
- PKU-Nanjing Institute of Translational Medicine, Nanjing, China
- Genvivo Biotech, Nanjing, China
| | - Yuan Shen
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yunzhe Fu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Shilin Fang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xinxin Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- ShanghaiTech University, Shanghai, China
| | - Peng Zou
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Chinese Institute for Brain Research (CIBR), Beijing, China
| | - Wulan Deng
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Yu Mu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixing Chen
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, State Key Laboratory of Membrane Biology, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- PKU-Nanjing Institute of Translational Medicine, Nanjing, China.
| |
Collapse
|
2
|
Kim DH, Triet HM, Lee SH, Jazani S, Jang S, Abedi SAA, Liu X, Seo J, Ha T, Chang YT, Ryu SH. Super-photostable organic dye for long-term live-cell single-protein imaging. Nat Methods 2025; 22:550-558. [PMID: 39815105 DOI: 10.1038/s41592-024-02584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 11/26/2024] [Indexed: 01/18/2025]
Abstract
Organic dyes play a crucial role in live-cell imaging because of their advantageous properties, such as photostability and high brightness. Here we introduce a super-photostable and bright organic dye, Phoenix Fluor 555 (PF555), which exhibits an order-of-magnitude longer photobleaching lifetime than conventional organic dyes without the requirement of any anti-photobleaching additives. PF555 is an asymmetric cyanine structure in which, on one side, the indole in the conventional Cyanine-3 is substituted with 3-oxo-quinoline. PF555 provides a powerful tool for long-term live-cell single-molecule imaging, as demonstrated by the imaging of the dynamic single-molecule interactions of the epidermal growth factor receptor with clathrin-coated structures on the plasma membrane of a live cell under physiological conditions.
Collapse
Affiliation(s)
- Do-Hyeon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Maryland, Baltimore, MD, USA.
| | - Hong Minh Triet
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Republic of Korea
- Molecular Imaging Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sun Hyeok Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sina Jazani
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Maryland, Baltimore, MD, USA
| | - Seongjae Jang
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Syed Ali Abbas Abedi
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore, Singapore
| | - Xiaogang Liu
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore, Singapore
| | - Jongcheol Seo
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Republic of Korea
- Molecular Imaging Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Maryland, Baltimore, MD, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Molecular Imaging Center, Pohang University of Science and Technology, Pohang, Republic of Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
3
|
Zheng Z, Gao J, Wang R, Dong C, Dong X, Sun J, Sun L, Gu X, Zhao C. Molecular Engineering of Luminogens for High-Integrity Imaging of Hydrogen Polysulfides via Activatable Aggregation-Induced Dual-Color Fluorescence. ACS NANO 2023; 17:22060-22070. [PMID: 37889140 DOI: 10.1021/acsnano.3c08767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Understanding biological events associated with H2Sn rather than mediated by H2S is of great significance but remains to be solved due to a lack of high-integrity imaging tools. In this study, we report a chemoselective probe for H2Sn over H2S through the molecular engineering of luminogens. Based on our search for H2Sn-activatable probes with high selectivity, we fabricate water-soluble and biocompatible nanoprobes. Such a designed nanoprobe shows rare aggregation-induced dual-color fluorescence responses to H2Sn, lighting up bright emissions at 588 and 750 nm, respectively. By use of this activatable dual-color fluorescence, high-integrity identification of intracellular H2Sn was successfully realized. Thus, our approach to H2Sn-activated multicolor fluorescent probes could provide valuable insight into interrogating H2Sn-mediated biological events.
Collapse
Affiliation(s)
- Zhecha Zheng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jinzhu Gao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Chengjun Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xuemei Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jie Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Lixin Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
4
|
Zhang Y, Zheng Y, Tomassini A, Singh AK, Raymo FM. Photoactivatable BODIPYs for Live-Cell PALM. Molecules 2023; 28:molecules28062447. [PMID: 36985424 PMCID: PMC10057988 DOI: 10.3390/molecules28062447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023] Open
Abstract
Photoactivated localization microscopy (PALM) relies on fluorescence photoactivation and single-molecule localization to overcome optical diffraction and reconstruct images of biological samples with spatial resolution at the nanoscale. The implementation of this subdiffraction imaging method, however, requires fluorescent probes with photochemical and photophysical properties specifically engineered to enable the localization of single photoactivated molecules with nanometer precision. The synthetic versatility and outstanding photophysical properties of the borondipyrromethene (BODIPY) chromophore are ideally suited to satisfy these stringent requirements. Specifically, synthetic manipulations of the BODIPY scaffold can be invoked to install photolabile functional groups and photoactivate fluorescence under photochemical control. Additionally, targeting ligands can be incorporated in the resulting photoactivatable fluorophores (PAFs) to label selected subcellular components in live cells. Indeed, photoactivatable BODIPYs have already allowed the sub-diffraction imaging of diverse cellular substructures in live cells using PALM and can evolve into invaluable analytical probes for bioimaging applications.
Collapse
Affiliation(s)
- Yang Zhang
- Program of Polymer and Color Chemistry, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27606, USA
- Correspondence: (Y.Z.); (F.M.R.)
| | - Yeting Zheng
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA
| | - Andrea Tomassini
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA
| | - Ambarish Kumar Singh
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA
| | - Françisco M. Raymo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA
- Correspondence: (Y.Z.); (F.M.R.)
| |
Collapse
|
5
|
Madaan V, Mohan B, Bhankar V, Ranga R, Kumari P, Singh P, Sillanpää M, Kumar A, Solovev AA, Kumar K. Metal-Decorated CeO2 nanomaterials for photocatalytic degradation of organic pollutants. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Moreno-Echeverri AM, Susnik E, Vanhecke D, Taladriz-Blanco P, Balog S, Petri-Fink A, Rothen-Rutishauser B. Pitfalls in methods to study colocalization of nanoparticles in mouse macrophage lysosomes. J Nanobiotechnology 2022; 20:464. [PMID: 36309696 PMCID: PMC9618187 DOI: 10.1186/s12951-022-01670-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background In the field of nanoscience there is an increasing interest to follow dynamics of nanoparticles (NP) in cells with an emphasis on endo-lysosomal pathways and long-term NP fate. During our research on this topic, we encountered several pitfalls, which can bias the experimental outcome. We address some of these pitfalls and suggest possible solutions. The accuracy of fluorescence microscopy methods has an important role in obtaining insights into NP interactions with lysosomes at the single cell level including quantification of NP uptake in a specific cell type. Methods Here we use J774A.1 cells as a model for professional phagocytes. We expose them to fluorescently-labelled amorphous silica NP with different sizes and quantify the colocalization of fluorescently-labelled NP with lysosomes over time. We focus on confocal laser scanning microscopy (CLSM) to obtain 3D spatial information and follow live cell imaging to study NP colocalization with lysosomes. Results We evaluate different experimental parameters that can bias the colocalization coefficients (i.e., Pearson’s and Manders’), such as the interference of phenol red in the cell culture medium with the fluorescence intensity and image post-processing (effect of spatial resolution, optical slice thickness, pixel saturation and bit depth). Additionally, we determine the correlation coefficients for NP entering the lysosomes under four different experimental set-ups. First, we found out that not only Pearson’s, but also Manders’ correlation coefficient should be considered in lysosome-NP colocalization studies; second, there is a difference in NP colocalization when using NP of different sizes and fluorescence dyes and last, the correlation coefficients might change depending on live-cell and fixed-cell imaging set-up. Conclusions The results summarize detailed steps and recommendations for the experimental design, staining, sample preparation and imaging to improve the reproducibility of colocalization studies between the NP and lysosomes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01670-9.
Collapse
|