1
|
Kariapper FS, Bouda M, Wolf C. Integrating Catalysis and Analysis: Accelerated Asymmetric Reaction Development With a Multitasking Reactivity Umpolung/Chiroptical Reporter Auxiliary. Chemistry 2025:e202500881. [PMID: 40343682 DOI: 10.1002/chem.202500881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/11/2025]
Abstract
High-throughput asymmetric reaction development of an organocatalytic Michael addition is achieved by using a readily available isatin molecule as an amine protecting group, reagent for reactivity Umpolung, and as a chiroptical yield and enantioselectivity reporter. The use of UV and circular dichroism inductions allows on-the-fly, chromatography-free parallel screening of a hundred reaction conditions to identify a catalytic procedure that converts a primary amine to either enantiomer of an a-branched chiral product in excellent yields and ee's. The isatin is recyclable and can be quantitatively recovered if desired. This case study shows how chiroptical high-throughput screening with a multitasking reagent can increase method development speed and reduce cost and waste compared to traditional reaction optimization workflows by streamlining the analysis of small-scale reaction setups and eliminating time-consuming work-up protocols.
Collapse
Affiliation(s)
- F Safia Kariapper
- Department of Chemistry, Georgetown University, 37th & O Street, Washington, DC, 20057, USA
| | - Maria Bouda
- Department of Chemistry, Georgetown University, 37th & O Street, Washington, DC, 20057, USA
| | - Christian Wolf
- Department of Chemistry, Georgetown University, 37th & O Street, Washington, DC, 20057, USA
| |
Collapse
|
2
|
Tong FF, Feng XT, Han YZ, Huang MC, Zhao HY, Zhang X. Nickel-Catalyzed Umpolung Difluoroalkylation of Imines Enables General Access to β-Difluoroalkylated Amines. Angew Chem Int Ed Engl 2025:e202500990. [PMID: 40204657 DOI: 10.1002/anie.202500990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/11/2025]
Abstract
Fluoroalkylated amines play a pivotal role in medicinal chemistry, yet the general and efficient synthesis of β-difluoroalkylated amines remains elusive. Here, we developed a nickel-catalyzed umpolung strategy that enables the difluoroalkylation of 2-azaallyl anions generated from aliphatic and aromatic imines, effectively overcoming the previous limitations. By inverting the polarity of imines, this strategy allows for the coupling of a variety of readily accessible difluoroalkyl bromides and iodides. This approach is characterized by its high efficiency, broad substrate scope, high functional group tolerance, and ease of synthesis. The rapid modification of bioactive molecules by the efficient synthesis of difluorinated analogs of key amine moieties present in bioactive molecules, including amphetamine, using the current approach shows the promising potential of this protocol in advancing drug discovery and development.
Collapse
Affiliation(s)
- Fei-Fei Tong
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiao-Tian Feng
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yuan-Zhan Han
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ming-Chen Huang
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hai-Yang Zhao
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xingang Zhang
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
3
|
Jiang Y, Li H, Tang H, Zhang Q, Yang H, Pan Y, Zou C, Zhang H, Walsh PJ, Yang X. Visible-light-driven net-1,2-hydrogen atom transfer of amidyl radicals to access β-amido ketone derivatives. Chem Sci 2025; 16:962-969. [PMID: 39664809 PMCID: PMC11629091 DOI: 10.1039/d4sc04997g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024] Open
Abstract
Hydrogen atom transfer (HAT) processes provide an important strategy for selective C-H functionalization. Compared with the popularity of 1,5-HAT processes, however, net-1,2-HAT reactions have been reported less frequently. Herein, we report a unique visible-light-mediated net-1,2-HAT of amidyl radicals for the synthesis of β-amido ketone derivatives. Single-electron transfer (SET) to N-aryloxy amides generates nitrogen-centered radicals (N˙), which undergo a rare net-1,2-HAT to form carbon-centered radicals (C˙). The C-centered radicals are then captured by silyl enol ethers on the way to β-amido ketones. A series of β-amido ketone derivatives (33 examples, up to 97% yield) were prepared with good functional group tolerance demonstrating the synthetic utility of this method. Mechanistic studies, including EPR, radical trapping experiments, deuterium labeling and KIE measurements, suggest an intramolecular radical net-1,2-HAT pathway.
Collapse
Affiliation(s)
- Yonggang Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University Kunming 650500 P. R. China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University Kunming 650500 P. R. China
| | - Hui Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University Kunming 650500 P. R. China
| | - Haoqin Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University Kunming 650500 P. R. China
| | - Qingyue Zhang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China Ningbo 315100 P. R. China
| | - Haitao Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University Kunming 650500 P. R. China
| | - Yu Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University Kunming 650500 P. R. China
| | - Chenggang Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University Kunming 650500 P. R. China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University Kunming 650500 P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University Kunming 650500 P. R. China
| |
Collapse
|
4
|
Du Y, Duan S, Huang S, Liu T, Zhang H, Walsh PJ, Yang X. Enantioselective Synthesis of Aminals Via Nickel-Catalyzed Hydroamination of 2-Azadienes with Indoles and N-Heterocycles. J Am Chem Soc 2024; 146:30947-30957. [PMID: 39475252 DOI: 10.1021/jacs.4c09750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
New methods for the enantioselective synthesis of N-alkylated indoles and their derivatives are of great interest because indoles are pivotal structural elements in biologically active molecules and natural products. They are also versatile intermediates in organic synthesis. Among well-established asymmetric hydroamination methods, the asymmetric hydroamination with indole-based substrates is a formidable challenge. This observation is likely due to the reduced nucleophilicity of the indole nitrogen. Herein, a unique nickel-catalyzed enantio- and branched-selective hydroamination of 2-azadienes with indoles and structurally related N-heterocycles is reported for the generation of enantioenriched N,N-aminals. Salient features of this reaction include good yields, mild reaction conditions, high enantioselectivities, and broad substrate scope (60 examples, up to 96% yield and 99% ee). The significance of this approach with indoles and other N-heterocycles is demonstrated through structural modification of natural products and drug molecules and the preparation of enantioenriched N-alkylated indole core structures. Mechanistic studies reveal that olefin insertion into a Ni-H bond in the hydroamination is the enantio-determining step and oxidative addition of the N-H bond may be the turnover-limiting step.
Collapse
Affiliation(s)
- Ya Du
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Shengzu Duan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Shuntao Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Tongqi Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
5
|
Jiang Y, Liu D, Zhang L, Qin C, Li H, Yang H, Walsh PJ, Yang X. Efficient construction of functionalized pyrroloindolines through cascade radical cyclization/intermolecular coupling. Chem Sci 2024; 15:2205-2210. [PMID: 38332810 PMCID: PMC10848758 DOI: 10.1039/d3sc05210a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
Pyrroloindolines are important structural units in nature and the pharmaceutical industry, however, most approaches to such structures involve transition-metal or photoredox catalysts. Herein, we describe the first tandem SET/radical cyclization/intermolecular coupling between 2-azaallyl anions and indole acetamides. This method enables the transition-metal-free synthesis of C3a-substituted pyrroloindolines under mild and convenient conditions. The synthetic utility of this transformation is demonstrated by the construction of an array of C3a-methylamine pyrroloindolines with good functional group tolerance and yields. Gram-scale sequential one-pot synthesis and hydrolysis reactions demonstrate the potential synthetic utility and scalability of this approach.
Collapse
Affiliation(s)
- Yonggang Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University Kunming 650091 P. R. China
| | - Dongxiang Liu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University Kunming 650091 P. R. China
| | - Lening Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University Kunming 650091 P. R. China
| | - Cuirong Qin
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University Kunming 650091 P. R. China
| | - Hui Li
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University Kunming 650091 P. R. China
| | - Haitao Yang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University Kunming 650091 P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104 USA
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University Kunming 650091 P. R. China
| |
Collapse
|
6
|
Duan S, Zi Y, Du Y, Cong J, Sun X, Jing H, Zhao J, Chen W, Yang X. Radical C(sp 3)-S Coupling for the Synthesis of α-Amino Sulfides. Org Lett 2023; 25:3687-3692. [PMID: 37172304 DOI: 10.1021/acs.orglett.3c01121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A unique transition-metal-free radical thiolation of 2-azaallyl anions has been developed. Easily accessible thiosulfonates and 2-azaallyls undergo the tandem process of single-electron transfer and radical-radical coupling to construct C(sp3)-S bonds. This robust protocol enables a mild and chemoselective coupling between 2-azaallyl anions and thiosulfonates to access α-amino sulfides in 50-92% yields (25 examples). The scalability of this protocol was demonstrated by telescopic gram-scale experiments. Mechanistic studies provide significant evidence for this radical thiolation reaction.
Collapse
Affiliation(s)
- Shengzu Duan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Yujin Zi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Ya Du
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Jielun Cong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Xiaotong Sun
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Hong Jing
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Jingfeng Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
7
|
Zi Q, Cong J, Li L, Yin M, Zhao J, Li L, Yang X. Synthesis of 1-pyrroline derivatives via cyclization of terminal alkynes with 2-azaallyls. Org Biomol Chem 2022; 20:2843-2851. [PMID: 35297933 DOI: 10.1039/d2ob00102k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient transition-metal-free cyclization reaction to prepare 1-pyrroline derivatives bearing various functional groups is described. In this method, a simple combination of a base and a solvent allows the cyclization reaction of terminal alkynes and 2-azaallyls to be carried out efficiently under mild and metal-free conditions. This cyclization reaction will provide an efficient method for the synthesis of medicinally relevant polysubstituted and multifunctionalized pyrrolines.
Collapse
Affiliation(s)
- Quanxing Zi
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Jielun Cong
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Lun Li
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Meng Yin
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Jingfeng Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Liang Li
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| |
Collapse
|
8
|
Duan S, Zi Y, Wang L, Cong J, Chen W, Li M, Zhang H, Yang X, Walsh PJ. α-Branched amines through radical coupling with 2-azaallyl anions, redox active esters and alkenes. Chem Sci 2022; 13:3740-3747. [PMID: 35432903 PMCID: PMC8966660 DOI: 10.1039/d2sc00500j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
α-Branched amines are fundamental building blocks in a variety of natural products and pharmaceuticals. Herein is reported a unique cascade reaction that enables the preparation of α-branched amines bearing aryl or alkyl groups at the β- or γ-positions. The cascade is initiated by reduction of redox active esters to alkyl radicals. The resulting alkyl radicals are trapped by styrene derivatives, leading to benzylic radicals. The persistent 2-azaallyl radicals and benzylic radicals are proposed to undergo a radical-radical coupling leading to functionalized amine products. Evidence is provided that the role of the nickel catalyst is to promote formation of the alkyl radical from the redox active ester and not promote the C-C bond formation. The synthetic method introduced herein tolerates a variety of imines and redox active esters, allowing for efficient construction of amine building blocks.
Collapse
Affiliation(s)
- Shengzu Duan
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Province Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Yujin Zi
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Province Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Lingling Wang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Province Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Jielun Cong
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Province Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Province Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Minyan Li
- Roy and Diana Vagelos Laboratories Penn/Merck Laboratory for High-Throughput Experimentation Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA USA
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Province Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Province Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories Penn/Merck Laboratory for High-Throughput Experimentation Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA USA
| |
Collapse
|
9
|
Zi Q, Li M, Cong J, Deng G, Duan S, Yin M, Chen W, Jing H, Yang X, Walsh PJ. Super-Electron-Donor 2-Azaallyl Anions Enable Construction of Isoquinolines. Org Lett 2022; 24:1786-1790. [PMID: 35212552 DOI: 10.1021/acs.orglett.2c00140] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein is introduced the application of "super-electron-donor"(SED) 2-azaallyl anions in a tandem reduction/radical cyclization/radical coupling/aromatization protocol that enables the rapid construction of isoquinolines. The value of this transition-metal-free method is highlighted by the wide range of isoquinoline ethyl amines prepared with good functional group tolerance and yields. An operationally simple gram scale synthesis is also conducted, confirming the scalability.
Collapse
Affiliation(s)
- Quanxing Zi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Minyan Li
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Jielun Cong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Guogang Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Shengzu Duan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Meng Yin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Hong Jing
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Shekhar S, Ahmed TS, Ickes AR, Haibach MC. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shashank Shekhar
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Tonia S. Ahmed
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew R. Ickes
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Michael C. Haibach
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
11
|
Wu X, Ren J, Shao Z, Yang X, Qian D. Transition-Metal-Catalyzed Asymmetric Couplings of α-Aminoalkyl Fragments to Access Chiral Alkylamines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaomei Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| | - Jiangtao Ren
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| | - Deyun Qian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| |
Collapse
|