1
|
Massad I, Marek I. Iterative synthesis of stereodefined polyacetals and their domino-Coates-Claisen rearrangement. Chem Sci 2025; 16:3946-3952. [PMID: 39906376 PMCID: PMC11788823 DOI: 10.1039/d4sc08790a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
We report a fully stereocontrolled synthesis of previously unknown unsaturated polyacetals through an iteration of two steps: (1) Pd-catalyzed hydroalkoxylation of alkoxyallenes; and (2) base-mediated isomerization of propargyl ethers into alkoxyallenes. Site- and stereoselective alkene isomerization of the capping allyl group initiates a domino-Coates-Claisen rearrangement, which completely rearranges the iteratively assembled backbone with the stereochemistry of the newly formed stereocentres controlled by the configuration of the acetal centres in the starting materials. The resulting products feature multiple stereocentres in a 1,3-relationship, which map onto a broad range of bioactive natural products, including deoxypropionates.
Collapse
Affiliation(s)
- Itai Massad
- Schulich Faculty of Chemistry and The Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology Haifa 3200009 Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry and The Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology Haifa 3200009 Israel
| |
Collapse
|
2
|
Kustiana BA, Elsherbeni SA, Linford‐Wood TG, Melen RL, Grayson MN, Morrill LC. B(C 6 F 5 ) 3 -Catalyzed E-Selective Isomerization of Alkenes. Chemistry 2022; 28:e202202454. [PMID: 35943082 PMCID: PMC9804281 DOI: 10.1002/chem.202202454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 01/05/2023]
Abstract
Herein, we report the B(C6 F5 )3 -catalyzed E-selective isomerization of alkenes. The transition-metal-free method is applicable across a diverse array of readily accessible substrates, giving access to a broad range of synthetically useful products containing versatile stereodefined internal alkenes. The reaction mechanism was investigated by using synthetic and computational methods.
Collapse
Affiliation(s)
- Betty A. Kustiana
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University Main BuildingPark PlaceCardiffCF10 3ATUK
| | - Salma A. Elsherbeni
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University Main BuildingPark PlaceCardiffCF10 3ATUK
| | | | - Rebecca L. Melen
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University Main BuildingPark PlaceCardiffCF10 3ATUK
| | | | - Louis C. Morrill
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University Main BuildingPark PlaceCardiffCF10 3ATUK
| |
Collapse
|
3
|
Deng H, Cheng Q, Cai H, Zhang D, Zhang QF. Ring Opening of Cyclopropyl Ketones with 1,3-Diketones for the Synthesis of 1,6-Diketone Derivatives. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Luo J, Liu P, Yang W, Niu H, Li S, Liang C. Chemical kinetics and promoted Co-immobilization for efficient catalytic carbonylation of ethylene oxide into methyl 3-hydroxypropionate. Front Chem 2022; 10:945028. [PMID: 35936085 PMCID: PMC9354985 DOI: 10.3389/fchem.2022.945028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
The carbonylative transformation of ethylene oxide (EO) into methyl 3-hydroxypropionate (3-HPM) is a key process for the production of 1,3-propanediol (1,3-PDO), which is currently viewed as one of the most promising monomers and intermediates in polyester and pharmaceuticals industry. In this work, a homogeneous reaction system using commercial Co2(CO)8 was first studied for the carbonylation of EO to 3-HPM. The catalytic behavior was related to the electronic environment of N on aromatic rings of ligands, where N with rich electron density induced a stronger coordination with Co center and higher EO transformation. A reaction order of 2.1 with respect to EO and 0.3 with respect to CO was unraveled based on the kinetics study. The 3-HPM yield reached 91.2% at only 40°C by Co2(CO)8 coordinated with 3-hydroxypyridine. However, Co-containing colloid was formed during the reaction, causing the tough separation and impossible recycling of samples. Concerning the sustainable utilization, Co particles immobilized on pre-treated carbon nanotubes (Co/CNT-C) were designed via an in situ reduced colloid method. It is remarkable that unlike conventional Co/CNT, Co/CNT-C was highly selective toward the transformation of EO to 3-HPM with a specific rate of 52.2 mmol·gCo-1·h-1, displaying a similar atomic efficiency to that of coordinated Co2(CO)8. After reaction, the supported Co/CNT-C catalyst could be easily separated from the liquid reaction mixture, leading to a convenient cyclic utilization.
Collapse
|
5
|
Siddaraju Y, Sabbatani J, Cohen A, Marek I. Preparation of Distant Quaternary Carbon Stereocenters by Double Selective Ring-Opening of 1,1-Biscyclopropyl Methanol Derivatives. Angew Chem Int Ed Engl 2022; 61:e202203652. [PMID: 35521738 PMCID: PMC9401570 DOI: 10.1002/anie.202203652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 12/15/2022]
Abstract
The diastereoselective double carbometalation reaction of cyclopropenes provides, in a single-pot operation, two ω-ene-[1,1]-bicyclopropyl ester derivatives. One regioisomer then undergoes a Pd-catalyzed addition of aryl iodide to provide skipped dienes possessing several distant stereocenters including two congested quaternary carbon centers with excellent diastereoselectivity.
Collapse
Affiliation(s)
- Yogesh Siddaraju
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyTechnion City3200009HaifaIsrael
| | - Juliette Sabbatani
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyTechnion City3200009HaifaIsrael
| | - Anthony Cohen
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyTechnion City3200009HaifaIsrael
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyTechnion City3200009HaifaIsrael
| |
Collapse
|
6
|
Siddaraju Y, Sabbatani J, Cohen A, Marek I. Preparation of Distant Quaternary Carbon Stereocenters by Double Selective Ring‐Opening of 1,1‐Biscyclopropyl Methanol Derivatives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Anthony Cohen
- Technion Israel Institute of Technology Chemistry ISRAEL
| | - Ilan Marek
- Technion - Israel Institute of Technology Schulich Faculty of Chemistry Technion City 32000 Haifa ISRAEL
| |
Collapse
|
7
|
Asymmetric Epoxidation of Unfunctionalized Olefins Catalyzed by Chiral (Pyrrolidine Salen) Mn (III) Complexes with Proline Sidearms. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Hwang Y, Baek SB, Kim D, Chang S. Chain Walking as a Strategy for Iridium-Catalyzed Migratory Amidation of Alkenyl Alcohols to Access α-Amino Ketones. J Am Chem Soc 2022; 144:4277-4285. [PMID: 35200026 DOI: 10.1021/jacs.2c00948] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Catalytic carbon-nitrogen bond formation in hydrocarbons is an appealing synthetic tool to access valuable nitrogen-containing compounds. Although a number of synthetic approaches have been developed to construct a bifunctional α-amino carbonyl scaffold in this realm, installation of an amino functionality at the remote and unfunctionalized aliphatic sites remains underdeveloped. Here we present a tandem iridium catalysis that enables the redox-relay amidation of alkenyl alcohols via chain walking and metal-nitrenoid transfer, which eventually offers a new route to various α-amino ketones with excellent regioselectivity. The virtue of this transformation is that an unrefined isomeric mixture of alkenyl alcohols can be utilized as the readily available starting materials to lead to the regioconvergent amidation. Mechanistic investigations revealed that the reaction proceeds via a tandem process involving two key components of redox-relay chain walking and intermolecular nitrenoid transfer with the assistance of hydrogen bonding, thus representing the competence of Ir catalysis for the olefin migratory C-N coupling with high efficiency and exquisite selectivity.
Collapse
Affiliation(s)
- Yeongyu Hwang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Seung Beom Baek
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
9
|
Abstract
Carbon–carbon bond formation by [3,3]-sigmatropic rearrangement is a fundamental and powerful method that has been used to build organic molecules for a long time. Initially, Claisen and Cope rearrangements proceeded at high temperatures with limited scopes. By introducing catalytic systems, highly functionalized substrates have become accessible for forming complex structures under mild conditions, and asymmetric synthesis can be achieved by using chiral catalytic systems. This review describes recent breakthroughs in catalytic [3,3]-sigmatropic rearrangements since 2016. Detailed reaction mechanisms are discussed to enable an understanding of the reactivity and selectivity of the reactions. Finally, this review is inspires the development of new cascade reaction pathways employing catalytic [3,3]-sigmatropic rearrangement as related methodologies for the synthesis of complex functional molecules.
Collapse
|
10
|
Zhang Q, Wang S, Zhang Q, Xiong T, Zhang Q. Radical Addition-Triggered Remote Migratory Isomerization of Unactivated Alkenes to Difluoromethylene-Containing Alkenes Enabled by Bimetallic Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qiao Zhang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Rd., Changchun, Jilin 130024, China
| | - Simin Wang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Rd., Changchun, Jilin 130024, China
| | - Qian Zhang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Rd., Changchun, Jilin 130024, China
| | - Tao Xiong
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Rd., Changchun, Jilin 130024, China
| | - Qian Zhang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Rd., Changchun, Jilin 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
11
|
Segura L, Massad I, Ogasawara M, Marek I. Stereodivergent Access to Trisubstituted Alkenylboronate Esters through Alkene Isomerization. Org Lett 2021; 23:9194-9198. [PMID: 34766777 PMCID: PMC8650100 DOI: 10.1021/acs.orglett.1c03513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
We report an efficient
method for the preparation of synthetically
valuable trisubstituted alkenylboronate esters through alkene
isomerization of their readily available 1,1-disubstituted regioisomeric
counterparts. Either stereoisomer of the target alkenylboronate
motif can be obtained at will from the same starting material by employing
different isomerization catalysts.
Collapse
Affiliation(s)
- Lucas Segura
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200009, Israel
| | - Itai Massad
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200009, Israel
| | - Masamichi Ogasawara
- Department of Natural Science, Graduate School of Science and Technology, Tokushima University, Tokushima 770-8506, Japan
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200009, Israel
| |
Collapse
|
12
|
Massad I, Marek I. Alkene Isomerization Revitalizes the Coates-Claisen Rearrangement. Angew Chem Int Ed Engl 2021; 60:18509-18513. [PMID: 34133046 PMCID: PMC8456971 DOI: 10.1002/anie.202105834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/13/2021] [Indexed: 11/10/2022]
Abstract
The [3,3]-sigmatropic rearrangement of allylic vinyl acetals, first investigated by Coates nearly four decades ago, is set apart from other variants of the Claisen rearrangement owing to the versatile monoprotected 1,5-dicarbonyl motif featured in the products. Unfortunately, the synthetically elusive nature of the substrates has thus far precluded the widespread application of this attractive transformation. Herein, we show that the key allylic vinyl acetals can be efficiently generated through alkene isomerization of their readily available regioisomeric counterparts (derived from allylic alcohols and α,β-unsaturated aldehydes), thus enabling the first systematic study of the substrate scope of this rearrangement, as well as the discovery of exceptionally mild conditions for its mediation by Lewis and Brønsted acids.
Collapse
Affiliation(s)
- Itai Massad
- Schulich Faculty of ChemistryTechnion—Israel Institute of Technology, Technion CityHaifa3200009Israel
| | - Ilan Marek
- Schulich Faculty of ChemistryTechnion—Israel Institute of Technology, Technion CityHaifa3200009Israel
| |
Collapse
|
13
|
Massad I, Marek I. Alkene Isomerization Revitalizes the Coates–Claisen Rearrangement. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Itai Massad
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology, Technion City Haifa 3200009 Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology, Technion City Haifa 3200009 Israel
| |
Collapse
|