1
|
Fallon TR, Shende VV, Wierzbicki IH, Pendleton AL, Watervoort NF, Auber RP, Gonzalez DJ, Wisecaver JH, Moore BS. Giant polyketide synthase enzymes in the biosynthesis of giant marine polyether toxins. Science 2024; 385:671-678. [PMID: 39116217 PMCID: PMC11416037 DOI: 10.1126/science.ado3290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Prymnesium parvum are harmful haptophyte algae that cause massive environmental fish kills. Their polyketide polyether toxins, the prymnesins, are among the largest nonpolymeric compounds in nature and have biosynthetic origins that have remained enigmatic for more than 40 years. In this work, we report the "PKZILLAs," massive P. parvum polyketide synthase (PKS) genes that have evaded previous detection. PKZILLA-1 and -2 encode giant protein products of 4.7 and 3.2 megadaltons that have 140 and 99 enzyme domains. Their predicted polyene product matches the proposed pre-prymnesin precursor of the 90-carbon-backbone A-type prymnesins. We further characterize the variant PKZILLA-B1, which is responsible for the shorter B-type analog prymnesin-B1, from P. parvum RCC3426 and thus establish a general model of haptophyte polyether biosynthetic logic. This work expands expectations of genetic and enzymatic size limits in biology.
Collapse
Affiliation(s)
- Timothy R. Fallon
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California, San Diego; 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
| | - Vikram V. Shende
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California, San Diego; 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
| | - Igor H. Wierzbicki
- Department of Pharmacology, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Amanda L. Pendleton
- Department of Biochemistry, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
| | - Nathan F. Watervoort
- Department of Biochemistry, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
| | - Robert P. Auber
- Department of Biochemistry, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
| | - David J. Gonzalez
- Department of Pharmacology, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Jennifer H. Wisecaver
- Department of Biochemistry, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California, San Diego; 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Wennrich JP, Holzenkamp C, Kolařík M, Maier W, Mándi A, Kurtán T, Ashrafi S, Ebada SS, Stadler M. Dactylfungins and Tetralones: Bioactive Metabolites from a Nematode-Associated Laburnicola nematophila. JOURNAL OF NATURAL PRODUCTS 2024; 87:1860-1871. [PMID: 39012621 PMCID: PMC11287750 DOI: 10.1021/acs.jnatprod.4c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/17/2024]
Abstract
A chemical investigation of Laburnicola nematophila, isolated from cysts of the plant parasitic nematode Heterodera filipjevi, affored three dactylfungin derivatives (1-3) and three tetralone congeners (4-6). Dactylfungin C (1), laburnicolin (4), and laburnicolenone (5) are previously undescribed natural products. Chemical structures of the isolated compounds were determined based on 1D and 2D NMR spectroscopic analyses together with HR-ESI-MS spectrometry and comparison with data reported in the literature. The relative configurations of compounds 1, 2, and 4-6 were determined based on their ROESY data and analysis of their coupling constants (J values). The absolute configurations of 4-6 were determined through the comparison of their measured and calculated TDDFT-ECD spectra. Compounds 1-3 were active against azole-resistant Aspergillus fumigatus.
Collapse
Affiliation(s)
- Jan-Peer Wennrich
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research (HZI) and German Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute
of Microbiology, Technische Universität
Braunschweig, Spielmannstraße
7, 38106 Braunschweig, Germany
| | - Caren Holzenkamp
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research (HZI) and German Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute
of Microbiology, Technische Universität
Braunschweig, Spielmannstraße
7, 38106 Braunschweig, Germany
| | - Miroslav Kolařík
- Institute
of Microbiology, Czech Academy of Science, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Wolfgang Maier
- Institute
for Epidemiology and Pathogen Diagonstics, Julius Kühn Institut (JKI) - Federal Research Centre for Cultivated
Plants, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Attila Mándi
- Department
of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary
| | - Tibor Kurtán
- Department
of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary
| | - Samad Ashrafi
- Institute
for Epidemiology and Pathogen Diagonstics, Julius Kühn Institut (JKI) - Federal Research Centre for Cultivated
Plants, Messeweg 11-12, 38104 Braunschweig, Germany
- Institute
for Crop and Soil Science, Julius Kühn
Institute (JKI) − Federal Research Centre for Cultivated Plants, Bundesallee 58, 38116 Braunschweig, Germany
| | - Sherif S. Ebada
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research (HZI) and German Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department
of Pharmacognosy, Faculty of Pharmacy, Ain
Shams University, Cairo 11566, Egypt
| | - Marc Stadler
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research (HZI) and German Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
3
|
Fallon TR, Shende VV, Wierzbicki IH, Auber RP, Gonzalez DJ, Wisecaver JH, Moore BS. Giant polyketide synthase enzymes biosynthesize a giant marine polyether biotoxin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577497. [PMID: 38352448 PMCID: PMC10862718 DOI: 10.1101/2024.01.29.577497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Prymnesium parvum are harmful haptophyte algae that cause massive environmental fish-kills. Their polyketide polyether toxins, the prymnesins, are amongst the largest nonpolymeric compounds in nature, alongside structurally-related health-impacting "red-tide" polyether toxins whose biosynthetic origins have been an enigma for over 40 years. Here we report the 'PKZILLAs', massive P. parvum polyketide synthase (PKS) genes, whose existence and challenging genomic structure evaded prior detection. PKZILLA-1 and -2 encode giant protein products of 4.7 and 3.2 MDa with 140 and 99 enzyme domains, exceeding the largest known protein titin and all other known PKS systems. Their predicted polyene product matches the proposed pre-prymnesin precursor of the 90-carbon-backbone A-type prymnesins. This discovery establishes a model system for microalgal polyether biosynthesis and expands expectations of genetic and enzymatic size limits in biology.
Collapse
Affiliation(s)
- Timothy R. Fallon
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California, San Diego; 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
| | - Vikram V. Shende
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California, San Diego; 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
| | - Igor H. Wierzbicki
- Department of Pharmacology, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Robert P. Auber
- Department of Biochemistry, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
| | - David J. Gonzalez
- Department of Pharmacology, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Jennifer H. Wisecaver
- Department of Biochemistry, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California, San Diego; 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Kovács T, Lajter I, Kúsz N, Schelz Z, Bózsity-Faragó N, Borbás A, Zupkó I, Krupitza G, Frisch R, Hohmann J, Vasas A, Mándi A. Isolation and NMR Scaling Factors for the Structure Determination of Lobatolide H, a Flexible Sesquiterpene from Neurolaena lobata. Int J Mol Sci 2023; 24:ijms24065841. [PMID: 36982924 PMCID: PMC10052924 DOI: 10.3390/ijms24065841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
A new flexible germacranolide (1, lobatolide H) was isolated from the aerial parts of Neurolaena lobata. The structure elucidation was performed by classical NMR experiments and DFT NMR calculations. Altogether, 80 theoretical level combinations with existing 13C NMR scaling factors were tested, and the best performing ones were applied on 1. 1H and 13C NMR scaling factors were also developed for two combinations utilizing known exomethylene containing derivatives, and the results were complemented by homonuclear coupling constant (JHH) and TDDFT-ECD calculations to elucidate the stereochemistry of 1. Lobatolide H possessed remarkable antiproliferative activity against human cervical tumor cell lines with different HPV status (SiHa and C33A), induced cell cycle disturbance and exhibited a substantial antimigratory effect in SiHa cells.
Collapse
Affiliation(s)
- Tibor Kovács
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary
- Doctoral School of Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Ildikó Lajter
- Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Norbert Kúsz
- Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Zsuzsanna Schelz
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Noémi Bózsity-Faragó
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Georg Krupitza
- Department of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Richard Frisch
- Institute for Ethnobiology, Playa Diana, San José GT-170, Guatemala
| | - Judit Hohmann
- Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
- ELKH-USZ Biologically Active Natural Products Research Group, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Andrea Vasas
- Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
- ELKH-USZ Biologically Active Natural Products Research Group, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary
| |
Collapse
|
5
|
Abstract
Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
6
|
Stereochemical investigation of flexible macrocyclic cembranes depending on residual dipolar couplings method. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Tan B, Zhang Q, Li J, Zhu Y, Zhang L, Zhang W, Zhang H, Chen Y, Zhang C. Totopotensamide Congeners from a Halogenase-Inactivated Mutant. JOURNAL OF NATURAL PRODUCTS 2023; 86:76-84. [PMID: 36606742 DOI: 10.1021/acs.jnatprod.2c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The installation of halogen atoms into aromatic and less activated polyketide substrates by halogenases is a powerful strategy to tune the bioactivity, bioavailability, and reactivity of compounds. In the biosynthetic pathway of totopotensamide A (1), the halogenase TotH was confirmed in vivo to catalyze the C-4 chlorination to form the nonproteinogenic amino acid ClMeDPG. Herein, we report the isolation, structure elucidation, and bioactivity evaluation of six new deschloro totopotensamide (TPM) congeners TPMs H2-H7 (5-10) from the totH-inactivated strain and the proposed absolute configuration of the polyketide chain in TPMs using 4 as a model compound by a combination of the JBCA and bioinformatic analysis. Compounds 5, 6, 8, and 9 displayed cytotoxicity against the A549, PANC-1, Calu3, and BXPC3 cell lines with IC50 values ranging from 2.3 to 9.7 μM.
Collapse
Affiliation(s)
- Bin Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Jieyi Li
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Haibo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Yang Chen
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| |
Collapse
|
8
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2021. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:905-924. [PMID: 36111695 DOI: 10.1080/10286020.2022.2117169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The new natural products reported in 2021 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2021 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
9
|
Liu M, Zhang X, Li G. Structural and Biological Insights into the Hot‐spot Marine Natural Products Reported from 2012 to 2021. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao 266235 China
| |
Collapse
|
10
|
Huo C, Han F, Xiao Y, Kim HJ, Lee IS. Microbial Transformation of Yakuchinone A and Cytotoxicity Evaluation of Its Metabolites. Int J Mol Sci 2022; 23:ijms23073992. [PMID: 35409351 PMCID: PMC9000044 DOI: 10.3390/ijms23073992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Yakuchinone A (1) is a bioactive diarylheptanoid isolated from the dried fruits of Alpinia oxyphylla. Microbial transformation has been recognized as an efficient method to produce new biologically active derivatives from natural products. In the present study, microbial transformation of yakuchinone A was performed with the fungus Mucor hiemalis KCTC 26779, which led to the isolation of nine new metabolites (2, 3a, 3b, and 4–9). Their structures were elucidated as (3S)-oxyphyllacinol (2), (3S,7R)- and (3S,7S)-7-hydroxyoxyphyllacinol (3a and 3b), (3S)-oxyphyllacinol-4′-O-β-d-glucopyranoside (4), (3S)-4″-hydroxyoxyphyllacinol (5), (3S)-3″-hydroxyoxyphyllacinol (6), (3S)-2″-hydroxyoxyphyllacinol (7), (3S)-2″-hydroxyoxyphyllacinol-2″-O-β-d-glucopyranoside (8), and (3S)-oxyphyllacinol-3-O-β-d-glucopyranoside (9) based on the comprehensive spectroscopic analyses and the application of modified Mosher’s method. All compounds were evaluated for their cytotoxic activities against melanoma, as well as breast, lung, and colorectal cancer cell lines. Compound 9, which was O-glucosylated on the diarylheptanoid alkyl chain, exhibited the most selective cytotoxic activities against melanoma cell lines with the IC50 values ranging from 6.09 to 9.74 μM, indicating that it might be considered as a possible anti-cancer lead compound.
Collapse
Affiliation(s)
- Chen Huo
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea; (C.H.); (F.H.); (Y.X.)
| | - Fubo Han
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea; (C.H.); (F.H.); (Y.X.)
| | - Yina Xiao
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea; (C.H.); (F.H.); (Y.X.)
| | - Hyun Jung Kim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun 58554, Jeonnam, Korea
- Correspondence: (H.J.K.); (I.-S.L.)
| | - Ik-Soo Lee
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea; (C.H.); (F.H.); (Y.X.)
- Correspondence: (H.J.K.); (I.-S.L.)
| |
Collapse
|
11
|
Ge R, Zhu Y, Wang H, Gu S. Methods and Application of Absolute Configuration Assignment for Chiral Compounds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Hill RA, Sutherland A. Hot off the press. Nat Prod Rep 2021. [DOI: 10.1039/d1np90037d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as chlorahupetone A from Chloranthus henryi var. hupehensis.
Collapse
Affiliation(s)
- Robert A. Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK
| | | |
Collapse
|