1
|
Ashwood B, Tokmakoff A. Kinetics and dynamics of oligonucleotide hybridization. Nat Rev Chem 2025; 9:305-327. [PMID: 40217001 DOI: 10.1038/s41570-025-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 05/15/2025]
Abstract
The hybridization of short nucleic acid strands is a remarkable spontaneous process that is foundational to biotechnology and nanotechnology and plays a crucial role in gene expression, editing and DNA repair. Decades of research into the mechanism of hybridization have resulted in a deep understanding of its thermodynamics, but many questions remain regarding its kinetics and dynamics. Recent advances in experiments and molecular dynamics simulations of nucleic acids are enabling more direct insight into the structural dynamics of hybridization, which can test long-standing assumptions regarding its mechanism. In this Review, we summarize the current state of knowledge of hybridization kinetics, discuss the barriers to a molecular description of hybridization dynamics, and highlight the new approaches that have begun uncovering the dynamics of hybridization and the duplex ensemble. The kinetics and dynamics of hybridization are highly sensitive to the composition of nucleic acids, and we emphasize recent discoveries and open questions on the role of nucleobase sequence and chemical modifications.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Department of Chemistry, Columbia University, New York, NY, USA.
| | - Andrei Tokmakoff
- Department of Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Altun A, Leach IF, Neese F, Bistoni G. A Generally Applicable Method for Disentangling the Effect of Individual Noncovalent Interactions on the Binding Energy. Angew Chem Int Ed Engl 2025; 64:e202421922. [PMID: 39625704 PMCID: PMC11914957 DOI: 10.1002/anie.202421922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
We introduce the fragment-pairwise Local Energy Decomposition (fp-LED) scheme for precise quantification of individual interactions contributing to the binding energy of arbitrary chemical entities, such as protein-ligand binding energies, lattice energies of molecular crystals, or association energies of large biomolecular assemblies. Using fp-LED, we can assess whether the contribution to the binding energy arising from noncovalent interactions between pairs of molecular fragments in any chemical system is attractive or repulsive, and accurately quantify its magnitude at the coupled cluster level - commonly considered as the "gold standard" of computational chemistry. Such insights are crucial for advancing molecular and material design strategies in fields like catalysis and therapeutic development. Illustrative applications across diverse fields demonstrate the versatility and accuracy of this theoretical framework, promising profound implications for fundamental understanding and practical applications.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Isaac F Leach
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| |
Collapse
|
3
|
Reynders S, Rihon J, Lescrinier E. Molecular Modeling on Duplexes with Threose-Based TNA and TPhoNA Reveals Structural Basis for Different Hybridization Affinity toward Complementary Natural Nucleic Acids. J Chem Theory Comput 2025; 21:2798-2814. [PMID: 39869220 DOI: 10.1021/acs.jctc.4c01316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Synthetic nucleic acids, also defined as xenobiotic nucleic acids (XNAs), opened an avenue to address the limitations of nucleic acid therapeutics and the development of alternative carriers for genetic information in biotechnological applications. Two related XNA systems of high interest are the α-l-threose nucleic acid (TNA) and (3'-2') phosphonomethyl threosyl nucleic acid (tPhoNA), where TNAs show potential in antisense applications, whereas tPhoNAs are investigated for their predisposition toward orthogonal genetic systems. We present predictions on helical models of TNA and tPhoNA chemistry in homoduplexes and in complex with native ribose chemistries. A stretched right-handed helical structure with a sugar puckering preference for the 4'3'T (C3'- endo/C4'- exo) and O4'1'T (C1'- endo/O4'- exo) is found for the in silico model of dsTNA, while for the in silico model of dstPhoNA a B-type structure is found with a sugar puckering preference for O4'1'T (C1'- endo/O4'- exo). Simulations with complementary DNA and RNA provided insight into the distinct pairing capabilities of TNA and tPhoNA.
Collapse
Affiliation(s)
- Sten Reynders
- Laboratory of Medicinal Chemistry, Rega Institute for Medicinal Research, Herestraat 49, Box 1030, Leuven B-3000, Belgium
| | - Jérôme Rihon
- Laboratory of Medicinal Chemistry, Rega Institute for Medicinal Research, Herestraat 49, Box 1030, Leuven B-3000, Belgium
| | - Eveline Lescrinier
- Laboratory of Medicinal Chemistry, Rega Institute for Medicinal Research, Herestraat 49, Box 1030, Leuven B-3000, Belgium
| |
Collapse
|
4
|
Jiamahate A, Bozorov TA, Wang J, Zhang J, Zhang H, Wang X, Yang H, Zhang D. Insights from DNA Barcodes-Based Phylogenetic Analysis of Medicinal Plants and Estimation of Their Conservation Status: A Case Study in the Tianshan Wild Forest, China. PLANTS (BASEL, SWITZERLAND) 2025; 14:99. [PMID: 39795359 PMCID: PMC11723300 DOI: 10.3390/plants14010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
The Tianshan wild fruit forest region is a vital repository of plant biodiversity, particularly rich in the unique genetic resources of endemic medicinal plants in this ecological niche. However, human activities such as unregulated mining and excessive grazing have led to a significant reduction in the diversity of these medicinal plants. This study represents the first application of DNA barcoding to 101 medicinal plants found in the Tianshan wild fruit forests, using three genetic loci along with morphological identification methods. A phylogenetic analysis was performed to delineate species relationships. The results indicate that the internal transcribed spacer (ITS) region has been identified as the most reliable barcode for species identification across different families, while combining data from multiple gene segments can improve species detection. Moreover, the Analytical Hierarchy Process (AHP) was employed to assess and prioritize the 101 medicinal plants, highlighting 23 species as candidates for urgent conservation efforts in the region. The approaches and insights from this study provide a significant benchmark for DNA barcoding studies on medicinal plants with local significance and establish an evaluative framework for the conservation of biodiversity and the surveillance of genetic resources among medicinal plants in the Tianshan wild fruit forest area.
Collapse
Affiliation(s)
- Aerguli Jiamahate
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (A.J.); (T.A.B.); (J.W.); (J.Z.); (H.Z.); (X.W.)
- University of Chinese Academy of Sciences, Beijing 100040, China
| | - Tohir A. Bozorov
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (A.J.); (T.A.B.); (J.W.); (J.Z.); (H.Z.); (X.W.)
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Tashkent 111226, Uzbekistan
| | - Jiancheng Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (A.J.); (T.A.B.); (J.W.); (J.Z.); (H.Z.); (X.W.)
| | - Jianwei Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (A.J.); (T.A.B.); (J.W.); (J.Z.); (H.Z.); (X.W.)
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Hongxiang Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (A.J.); (T.A.B.); (J.W.); (J.Z.); (H.Z.); (X.W.)
| | - Xiyong Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (A.J.); (T.A.B.); (J.W.); (J.Z.); (H.Z.); (X.W.)
| | - Honglan Yang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (A.J.); (T.A.B.); (J.W.); (J.Z.); (H.Z.); (X.W.)
| | - Daoyuan Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (A.J.); (T.A.B.); (J.W.); (J.Z.); (H.Z.); (X.W.)
| |
Collapse
|
5
|
Altun A, Schiavo E, Mehring M, Schulz S, Bistoni G, Auer AA. Rationalizing polymorphism with local correlation-based methods: a case study of pnictogen molecular crystals. Phys Chem Chem Phys 2024; 26:28733-28745. [PMID: 39530261 DOI: 10.1039/d4cp03697b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A computational workflow is proposed to quantify and rationalize the relative stability of different structures of molecular crystals using cluster models and quantum chemical methods. The Hartree-Fock plus London Dispersion (HFLD) scheme is used to estimate the lattice energy of molecular crystals in various structural arrangements. The fragment-pairwise Local Energy Decomposition (fp-LED) scheme is then employed to quantify the key intermolecular interactions responsible for the relative stability of different crystal structures. The fp-LED scheme provides also in-depth chemical insights by decomposing each interaction into energy components such as dispersion, electrostatics, and exchange. Notably, this analysis requires only a single interaction energy computation per structure on a suitable cluster model. As a case study, two polymorphs of each of the following are considered: naphthyl-substituted dipnictanes (with As, Sb, and Bi as the pnictogen atom) and tris(thiophen-2-yl)bismuthane. The approach outlined offers high accuracy as well as valuable insights for developing design principles to engineer crystal structures with tailored properties, opening up new avenues in the study of molecular aggregates, potentially impacting diverse fields in materials science and beyond.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany.
| | - Eduardo Schiavo
- Max-Planck-Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany.
| | - Michael Mehring
- Fakultät für Naturwissenschaften, Institut für Chemie, Professur Koordinationschemie, Technische Universität Chemnitz, Straße der Nationen 62, D-09107 Chemnitz, Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 5-7, D-45117 Essen, Germany
| | - Giovanni Bistoni
- Department of Chemistry, Biology and Biotechnology University of Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy.
| | - Alexander A Auer
- Max-Planck-Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
6
|
Park G, Wralstad EC, Faginas-Lago N, Qian K, Raines RT, Bistoni G, Cummins CC. Pentaphosphorylation via the Anhydride of Dihydrogen Pentametaphosphate: Access to Nucleoside Hexa- and Heptaphosphates and Study of Their Interaction with Ribonuclease A. ACS CENTRAL SCIENCE 2024; 10:1415-1422. [PMID: 39071052 PMCID: PMC11273453 DOI: 10.1021/acscentsci.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Pentametaphosphate is the little studied cyclic pentamer of the metaphosphate ion, [PO3]5 5-. We show that the doubly protonated form of this pentamer can be selectively dehydrated to provide the anhydride [P5O14]3- (1). This trianion is the well-defined condensed phosphate component of a novel reagent for attachment of a pentaphosphate chain to biomolecules all in one go. Here, we demonstrate by extending adenosine monophosphate (AMP) and uridine monophosphate (UMP) to their corresponding nucleoside hexaphosphates, while adenosine diphosphate (ADP) and uridine diphosphate (UDP) are phosphate chain-extended to the corresponding nucleoside heptaphosphates. Such constructs are of interest for their potential biological function with respect to RNA-processing enzymes. Thus, we go on to investigate in detail the interaction of the polyanionic constructs with ribonuclease A, a model protein containing a polycationic active site and for which X-ray crystal structures are relatively straightforward to obtain. This work presents a combined experimental and quantum chemical approach to understanding the interactions of RNase A with the new nucleoside hexa- and heptaphosphate constructs.
Collapse
Affiliation(s)
- Gyeongjin Park
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Evans C. Wralstad
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Noelia Faginas-Lago
- Department
of Chemistry, Biology,and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Kevin Qian
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Ronald T. Raines
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Giovanni Bistoni
- Department
of Chemistry, Biology,and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Christopher C. Cummins
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Ludwig V, da Costa Ludwig ZM, Modesto MDA, Rocha AA. Binding energies and hydrogen bonds effects on DNA-cisplatin interactions: a DFT-xTB study. J Mol Model 2024; 30:187. [PMID: 38801468 DOI: 10.1007/s00894-024-05983-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
CONTEXT A systematic study of hydrogen bonds in base pairs and the interaction of cisplatin with DNA fragments was carried out. Structure, binding energies, and electron density were analyzed. xTB has proven to be an accurate method for obtaining structures and binding energies in DNA structures. Our xTB values for DNA base binding energy were in the same order and in some cases better than CAM-B3LYP values compared to experimental values. Double-stranded DNA-cisplatin structures have been calculated and the hydrogen bonds of water molecules are a decisive factor contributing to the preference for the cisplatin-Guanine interaction. Higher values of the water hydrogen bonding energies were obtained in cisplatin-Guanine structures. Furthermore, the electrostatic potential was used to investigate and improve the analysis of DNA-cisplatin structures. METHODS We applied the xTB method and the CAM-B3LYP functional combined with def2-SVP basis set to perform and analyze of the bonding energies of the cisplatin interaction and the effects of the hydrogen bonds. Results were calculated employing the xTB and the ORCA software.
Collapse
Affiliation(s)
- Valdemir Ludwig
- Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, CP 36036-330, Minas Gerais, Brasil.
| | - Zélia Maria da Costa Ludwig
- Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, CP 36036-330, Minas Gerais, Brasil
| | - Marlon de Assis Modesto
- Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, CP 36036-330, Minas Gerais, Brasil
| | - Arthur Augusto Rocha
- Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, CP 36036-330, Minas Gerais, Brasil
| |
Collapse
|
8
|
Bistoni G, Altun A, Wang Z, Neese F. Local Energy Decomposition Analysis of London Dispersion Effects: From Simple Model Dimers to Complex Biomolecular Assemblies. Acc Chem Res 2024; 57:1411-1420. [PMID: 38602396 PMCID: PMC11080063 DOI: 10.1021/acs.accounts.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
ConspectusLondon dispersion (LD) forces are ubiquitous in chemistry, playing a pivotal role in a wide range of chemical processes. For example, they influence the structure of molecular crystals, the selectivity of organocatalytic transformations, and the formation of biomolecular assemblies. Harnessing these forces for chemical applications requires consistent quantification of the LD energy across a broad and diverse spectrum of chemical scenarios. Despite the great progress made in recent years in the development of experimental strategies for LD quantification, quantum chemical methods remain one of the most useful tools in the hand of chemists for the study of these weak interactions. Unfortunately, the accurate quantification of LD effects in complex systems poses many challenges for electronic structure theories. One of the problems stems from the fact that LD forces originate from long-range electronic dynamic correlation, and hence, their rigorous description requires the use of complex, highly correlated wave function-based methods. These methods typically feature a steep scaling with the system size, limiting their applicability to small model systems. Another core challenge lies in disentangling short-range from long-range dynamic correlation, which from a rigorous quantum mechanical perspective is not possible.In this Account, we describe our research endeavors in the development of broadly applicable computational methods for LD quantification in molecular chemistry as well as challenging applications of these schemes in various domains of chemical research. Our strategy lies in the use of local correlation theories to reduce the computational cost associated with complex electronic structure methods while providing at the same time a simple means of decomposition of dynamic correlation into its long-range and short-range components. In particular, the local energy decomposition (LED) scheme at the domain-based local pair natural orbital coupled cluster (DLPNO-CCSD(T)) level has emerged as a powerful tool in our research, offering a clear-cut quantitative definition of the LD energy that remains valid across a plethora of different chemical scenarios. Typical applications of this scheme are examined, encompassing protein-ligand interactions and reactivity studies involving many fragments and complex electronic structures. In addition, our research also involves the development of novel cost-effective methodologies, which exploit the LED definition of the LD energy, for LD energy quantification that are, in principle, applicable to systems with thousands of atoms. The Hartree-Fock plus London Dispersion (HFLD) scheme, correcting the HF interaction energy using an approximate CCSD(T)-based LD energy, is a useful, parameter-free electronic structure method for the study of LD effects in systems with hundreds of molecular fragments. However, the usefulness of the LED scheme reaches beyond providing an interpretation of the calculated DLPNO-CCSD(T) or DLPNO-MP2 interaction energies. For example, the dispersion energies obtained from the LED can be fruitfully used in order to parametrize semiempirical dispersion models. We will demonstrate this in the context of an emerging semiempirical method, namely, the Natural Orbital Tied Constructed Hamiltonian (NOTCH) method. NOTCH incorporates LED-derived LD energies and shows promising accuracy at a minimum amount of empiricism. Thus, it holds substantial promise for large and complex systems.
Collapse
Affiliation(s)
- Giovanni Bistoni
- Department
of Chemistry, Biology and Biotechnology, University of Perugia Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Ahmet Altun
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Zikuan Wang
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
9
|
Rummel L, Schreiner PR. Advances and Prospects in Understanding London Dispersion Interactions in Molecular Chemistry. Angew Chem Int Ed Engl 2024; 63:e202316364. [PMID: 38051426 DOI: 10.1002/anie.202316364] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
London dispersion (LD) interactions are the main contribution of the attractive part of the van der Waals potential. Even though LD effects are the driving force for molecular aggregation and recognition, the role of these omnipresent interactions in structure and reactivity had been largely underappreciated over decades. However, in the recent years considerable efforts have been made to thoroughly study LD interactions and their potential as a chemical design element for structures and catalysis. This was made possible through a fruitful interplay of theory and experiment. This review highlights recent results and advances in utilizing LD interactions as a structural motif to understand and utilize intra- and intermolecularly LD-stabilized systems. Additionally, we focus on the quantification of LD interactions and their fundamental role in chemical reactions.
Collapse
Affiliation(s)
- Lars Rummel
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| |
Collapse
|
10
|
Ashwood B, Jones MS, Lee Y, Sachleben JR, Ferguson AL, Tokmakoff A. Molecular insight into how the position of an abasic site modifies DNA duplex stability and dynamics. Biophys J 2024; 123:118-133. [PMID: 38006207 PMCID: PMC10808028 DOI: 10.1016/j.bpj.2023.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/19/2023] [Accepted: 11/22/2023] [Indexed: 11/26/2023] Open
Abstract
Local perturbations to DNA base-pairing stability from lesions and chemical modifications can alter the stability and dynamics of an entire oligonucleotide. End effects may cause the position of a disruption within a short duplex to influence duplex stability and structural dynamics, yet this aspect of nucleic acid modifications is often overlooked. We investigate how the position of an abasic site (AP site) impacts the stability and dynamics of short DNA duplexes. Using a combination of steady-state and time-resolved spectroscopy and molecular dynamics simulations, we unravel an interplay between AP-site position and nucleobase sequence that controls energetic and dynamic disruption to the duplex. The duplex is disrupted into two segments by an entropic barrier for base-pairing on each side of the AP site. The barrier induces fraying of the short segment when an AP site is near the termini. Shifting the AP site inward promotes a transition from short-segment fraying to fully encompassing the barrier into the thermodynamics of hybridization, leading to further destabilization of the duplex. Nucleobase sequence determines the length scale for this transition by tuning the barrier height and base-pair stability of the short segment, and certain sequences enable out-of-register base-pairing to minimize the barrier height.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Michael S Jones
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois
| | - Yumin Lee
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Joseph R Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, Illinois
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois.
| | - Andrei Tokmakoff
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
11
|
Ashwood B, Jones MS, Lee Y, Sachleben JR, Ferguson AL, Tokmakoff A. Molecular insight into how the position of an abasic site and its sequence environment influence DNA duplex stability and dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550182. [PMID: 37546925 PMCID: PMC10401965 DOI: 10.1101/2023.07.22.550182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Local perturbations to DNA base-pairing stability from lesions and chemical modifications can alter the stability and dynamics of an entire oligonucleotide. End effects may cause the position of a disruption within a short duplex to influence duplex stability and structural dynamics, yet this aspect of nucleic acid modifications is often overlooked. We investigate how the position of an abasic site (AP site) impacts the stability and dynamics of short DNA duplexes. Using a combination of steady-state and time-resolved spectroscopy and molecular dynamics simulations, we unravel an interplay between AP-site position and nucleobase sequence that controls energetic and dynamic disruption to the duplex. The duplex is disrupted into two segments by an entropic barrier for base pairing on each side of the AP site. The barrier induces fraying of the short segment when an AP site is near the termini. Shifting the AP site inward promotes a transition from short-segment fraying to fully encompassing the barrier into the thermodynamics of hybridization, leading to further destabilization the duplex. Nucleobase sequence determines the length scale for this transition by tuning the barrier height and base-pair stability of the short segment, and certain sequences enable out-of-register base pairing to minimize the barrier height.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637, United States
| | - Michael S. Jones
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Yumin Lee
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637, United States
| | - Joseph R. Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, IL 60637, United States
| | - Andrew L. Ferguson
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637, United States
| |
Collapse
|
12
|
Epstein RJ, Lin FPY, Brink RA, Blackburn J. Synonymous alterations of cancer-associated Trp53 CpG mutational hotspots cause fatal developmental jaw malocclusions but no tumors in knock-in mice. PLoS One 2023; 18:e0284327. [PMID: 37053216 PMCID: PMC10101519 DOI: 10.1371/journal.pone.0284327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Intragenic CpG dinucleotides are tightly conserved in evolution yet are also vulnerable to methylation-dependent mutation, raising the question as to why these functionally critical sites have not been deselected by more stable coding sequences. We previously showed in cell lines that altered exonic CpG methylation can modify promoter start sites, and hence protein isoform expression, for the human TP53 tumor suppressor gene. Here we extend this work to the in vivo setting by testing whether synonymous germline modifications of exonic CpG sites affect murine development, fertility, longevity, or cancer incidence. We substituted the DNA-binding exons 5-8 of Trp53, the mouse ortholog of human TP53, with variant-CpG (either CpG-depleted or -enriched) sequences predicted to encode the normal p53 amino acid sequence; a control construct was also created in which all non-CpG sites were synonymously substituted. Homozygous Trp53-null mice were the only genotype to develop tumors. Mice with variant-CpG Trp53 sequences remained tumor-free, but were uniquely prone to dental anomalies causing jaw malocclusion (p < .0001). Since the latter phenotype also characterises murine Rett syndrome due to dysfunction of the trans-repressive MeCP2 methyl-CpG-binding protein, we hypothesise that CpG sites may exert non-coding phenotypic effects via pre-translational cis-interactions of 5-methylcytosine with methyl-binding proteins which regulate mRNA transcript initiation, expression or splicing, although direct effects on mRNA structure or translation are also possible.
Collapse
Affiliation(s)
- Richard J Epstein
- University of New South Wales, St Vincent's Hospital Campus, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
| | - Frank P Y Lin
- University of New South Wales, St Vincent's Hospital Campus, Sydney, Australia
- Centre for Clinical Genomics, The Kinghorn Cancer Centre, Sydney, Australia
| | - Robert A Brink
- University of New South Wales, St Vincent's Hospital Campus, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
| | - James Blackburn
- University of New South Wales, St Vincent's Hospital Campus, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
| |
Collapse
|
13
|
Altun A, Neese F, Bistoni G. Open-Shell Variant of the London Dispersion-Corrected Hartree-Fock Method (HFLD) for the Quantification and Analysis of Noncovalent Interaction Energies. J Chem Theory Comput 2022; 18:2292-2307. [PMID: 35167304 PMCID: PMC9009084 DOI: 10.1021/acs.jctc.1c01295] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The London dispersion
(LD)-corrected Hartree–Fock (HF) method
(HFLD) is an ab initio approach for the quantification
and analysis of noncovalent interactions (NCIs) in large systems that
is based on the domain-based local pair natural orbital coupled-cluster
(DLPNO-CC) theory. In the original HFLD paper, we discussed the implementation,
accuracy, and efficiency of its closed-shell variant. Herein, an extension
of this method to open-shell molecular systems is presented. Its accuracy
is tested on challenging benchmark sets for NCIs, using CCSD(T) energies
at the estimated complete basis set limit as reference. The HFLD scheme
was found to be as accurate as the best-performing dispersion-corrected
exchange-correlation functionals, while being nonempirical and equally
efficient. In addition, it can be combined with the well-established
local energy decomposition (LED) for the analysis of NCIs, thus yielding
additional physical insights.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.,Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
14
|
Neese F. Software update: The
ORCA
program system—Version 5.0. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1606] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Frank Neese
- Max Planck Institut für Kohlenforschung Mülheim an der Ruhr Germany
| |
Collapse
|
15
|
Bhattacharjee S, Isegawa M, Garcia-Ratés M, Neese F, Pantazis DA. Ionization Energies and Redox Potentials of Hydrated Transition Metal Ions: Evaluation of Domain-Based Local Pair Natural Orbital Coupled Cluster Approaches. J Chem Theory Comput 2022; 18:1619-1632. [PMID: 35191695 PMCID: PMC8908766 DOI: 10.1021/acs.jctc.1c01267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Hydrated transition
metal ions are prototypical systems that can
be used to model properties of transition metals in complex chemical
environments. These seemingly simple systems present challenges for
computational chemistry and are thus crucial in evaluations of quantum
chemical methods for spin-state and redox energetics. In this work,
we explore the applicability of the domain-based pair natural orbital
implementation of coupled cluster (DLPNO-CC) theory to the calculation
of ionization energies and redox potentials for hydrated ions of all
first transition row (3d) metals in the 2+/3+ oxidation states, in
connection with various solvation approaches. In terms of model definition,
we investigate the construction of a minimally explicitly hydrated
quantum cluster with a first and second hydration layer. We report
on the convergence with respect to the coupled cluster expansion and
the PNO space, as well as on the role of perturbative triple excitations.
A recent implementation of the conductor-like polarizable continuum
model (CPCM) for the DLPNO-CC approach is employed to determine self-consistent
redox potentials at the coupled cluster level. Our results establish
conditions for the convergence of DLPNO-CCSD(T) energetics and stress
the absolute necessity to explicitly consider the second solvation
sphere even when CPCM is used. The achievable accuracy for redox potentials
of a practical DLPNO-based approach is, on average, 0.13 V. Furthermore,
multilayer approaches that combine a higher-level DLPNO-CCSD(T) description
of the first solvation sphere with a lower-level description of the
second solvation layer are investigated. The present work establishes
optimal and transferable methodological choices for employing DLPNO-based
coupled cluster theory, the associated CPCM implementation, and cost-efficient
multilayer derivatives of the approach for open-shell transition metal
systems in complex environments.
Collapse
Affiliation(s)
- Sinjini Bhattacharjee
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Miho Isegawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Miquel Garcia-Ratés
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
16
|
Nieuwland C, Hamlin TA, Fonseca Guerra C, Barone G, Bickelhaupt FM. B-DNA Structure and Stability: The Role of Nucleotide Composition and Order. ChemistryOpen 2022; 11:e202100231. [PMID: 35083880 PMCID: PMC8805170 DOI: 10.1002/open.202100231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/10/2021] [Indexed: 11/08/2022] Open
Abstract
We have quantum chemically analyzed the influence of nucleotide composition and sequence (that is, order) on the stability of double-stranded B-DNA triplets in aqueous solution. To this end, we have investigated the structure and bonding of all 32 possible DNA duplexes with Watson-Crick base pairing, using dispersion-corrected DFT at the BLYP-D3(BJ)/TZ2P level and COSMO for simulating aqueous solvation. We find enhanced stabilities for duplexes possessing a higher GC base pair content. Our activation strain analyses unexpectedly identify the loss of stacking interactions within individual strands as a destabilizing factor in the duplex formation, in addition to the better-known effects of partial desolvation. Furthermore, we show that the sequence-dependent differences in the interaction energy for duplexes of the same overall base pair composition result from the so-called "diagonal interactions" or "cross terms". Whether cross terms are stabilizing or destabilizing depends on the nature of the electrostatic interaction between polar functional groups in the pertinent nucleobases.
Collapse
Affiliation(s)
- Celine Nieuwland
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
| | - Célia Fonseca Guerra
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
- Leiden Institute of ChemistryGorlaeus LaboratoriesLeiden UniversityEinsteinweg 552300 CCLeiden (TheNetherlands
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e FarmaceuticheUniversità degli Studi di PalermoViale delle Scienze, Edificio 1790128PalermoItaly
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
- Institute of Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 1356525 AJNijmegen (TheNetherlands
| |
Collapse
|