1
|
Dhayalan V, Dodke VS, Pradeep Kumar M, Korkmaz HS, Hoffmann-Röder A, Amaladass P, Dandela R, Dhanusuraman R, Knochel P. Recent synthetic strategies for the functionalization of fused bicyclic heteroaromatics using organo-Li, -Mg and -Zn reagents. Chem Soc Rev 2024; 53:11045-11099. [PMID: 39311874 DOI: 10.1039/d4cs00369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
This review highlights the use of functionalized organo-Li, -Mg and -Zn reagents for the construction and selective functionalization of 5- and 6-membered fused bicyclic heteroaromatics. Special attention is given to the discussion of advanced syntheses for the preparation of highly functionalized heteroaromatic scaffolds, including quinolines, naphthyridines, indoles, benzofurans, benzothiophenes, benzoxazoles, benzothiazoles, benzopyrimidines, anthranils, thienothiophenes, purine coumarins, chromones, quinolones and phthalazines and their fused heterocyclic derivatives. The organometallic reagents used for the desired functionalizations of these scaffolds are generally prepared in situ using the following methods: (i) through directed selective metalation reactions (DoM), (ii) by means of halogen/metal exchange reactions, (iii) through oxidative metal insertions (Li, Mg, Zn), and (iv) by transmetalation reactions (organo-Li and Mg transmetalations with ZnCl2 or ZnO(Piv)2). The resulting reactive organometallic reagents allow a wide range of C-C, C-N and C-X cross-coupling reactions with different electrophiles, employing in particular Kumada or Negishi protocols among other transition metal (Pd, Ni, Co, Cu, Cr, Fe, etc.)-catalyzed processes. In addition, key developments concerning selective metalation techniques will be presented, which rely on the use of RLi, LDA and TMP metal bases. These methods are now widely employed in organic synthetic chemistry and have proven to be particularly valuable for drug development programs in the pharmaceutical industry. New and improved protocols have resulted in many Li, Mg and Zn organyls now being compatible with functionalized aryl, heteroaryl, alkenyl, alkynyl and alkyl compounds even in the presence of labile functional groups, making these reagents well-suited for C(sp2)-C(sp2), C(sp2)-C(sp) and C(sp2)-C(sp3) cross-coupling reactions with fused heteroaryl halides. In addition, the use of some transition metal-catalyzed processes occasionally allows a reversed role of the reactants in cross-coupling reactions, providing alternative synthetic routes for the preparation of fused heteroaromatic-based bioactive drugs and natural products. In line with this, this article points to novel methods for the functionalization of bicyclic heteroaromatic scaffolds by organometallic reagents that have been published in the period 2010-2023.
Collapse
Affiliation(s)
- Vasudevan Dhayalan
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Vishal S Dodke
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Marappan Pradeep Kumar
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Hatice Seher Korkmaz
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Anja Hoffmann-Röder
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Pitchamuthu Amaladass
- Department of Chemistry, Madanapalle Institute of Technology & Science, Madanapalle 517325, Andhra Pradesh, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Ragupathy Dhanusuraman
- Central Instrumentation Facility (CIF), School of Physical, Chemical and Applied Sciences, Pondicherry University, Puducherry-605014, India
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| |
Collapse
|
2
|
Voinarovska V, Kabeshov M, Dudenko D, Genheden S, Tetko IV. When Yield Prediction Does Not Yield Prediction: An Overview of the Current Challenges. J Chem Inf Model 2024; 64:42-56. [PMID: 38116926 PMCID: PMC10778086 DOI: 10.1021/acs.jcim.3c01524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
Machine Learning (ML) techniques face significant challenges when predicting advanced chemical properties, such as yield, feasibility of chemical synthesis, and optimal reaction conditions. These challenges stem from the high-dimensional nature of the prediction task and the myriad essential variables involved, ranging from reactants and reagents to catalysts, temperature, and purification processes. Successfully developing a reliable predictive model not only holds the potential for optimizing high-throughput experiments but can also elevate existing retrosynthetic predictive approaches and bolster a plethora of applications within the field. In this review, we systematically evaluate the efficacy of current ML methodologies in chemoinformatics, shedding light on their milestones and inherent limitations. Additionally, a detailed examination of a representative case study provides insights into the prevailing issues related to data availability and transferability in the discipline.
Collapse
Affiliation(s)
- Varvara Voinarovska
- Molecular
AI, Discovery Sciences R&D, AstraZeneca, 431 83 Gothenburg, Sweden
- TUM
Graduate School, Faculty of Chemistry, Technical
University of Munich, 85748 Garching, Germany
| | - Mikhail Kabeshov
- Molecular
AI, Discovery Sciences R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Dmytro Dudenko
- Enamine
Ltd., 78 Chervonotkatska str., 02094 Kyiv, Ukraine
| | - Samuel Genheden
- Molecular
AI, Discovery Sciences R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Igor V. Tetko
- Molecular
Targets and Therapeutics Center, Helmholtz Munich − Deutsches
Forschungszentrum für Gesundheit und Umwelt (GmbH), Institute of Structural Biology, 85764 Neuherberg, Germany
| |
Collapse
|
3
|
Daher A, Bousfiha A, Tolbatov I, Mboyi CD, Cattey H, Roisnel T, Fleurat-Lessard P, Hissler M, Hierso JC, Bouit PA, Roger J. Tetrazo[1,2-b]indazoles: Straightforward Access to Nitrogen-Rich Polyaromatics from s-Tetrazines. Angew Chem Int Ed Engl 2023; 62:e202300571. [PMID: 36710261 DOI: 10.1002/anie.202300571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
The straightforward access to a new class of aza-polyaromatics is reported. Starting from readily available fluorinated s-tetrazine, a cyclization process with azide leads to the formation of an unprecedented tetrazo[1,2-b]indazole or a bis-tetrazo[1,2-b]indazole (cis and trans conformers). Based on the new nitrogen core, further N-directed palladium-catalyzed ortho-C-H bond functionalization allows the introduction of halides or acetates. The physicochemical properties of these compounds were studied by a joint experimental/theoretical approach. The tetrazo[1,2-b]indazoles display solid-state π-stacking, low reduction potential, absorption in the visible range up to the near-infrared, and intense fluorescence, depending on the molecular structure.
Collapse
Affiliation(s)
- Ahmad Daher
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| | - Asmae Bousfiha
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| | - Iogann Tolbatov
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| | - Clève D Mboyi
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| | - Hélène Cattey
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| | | | - Paul Fleurat-Lessard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| | | | - Jean-Cyrille Hierso
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| | | | - Julien Roger
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| |
Collapse
|
4
|
Recent Advances in Synthesis and Properties of Pyrazoles. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pyrazole-containing compounds represent one of the most influential families of N-heterocycles due to their proven applicability and versatility as synthetic intermediates in preparing relevant chemicals in biological, physical-chemical, material science, and industrial fields. Therefore, synthesizing structurally diverse pyrazole derivatives is highly desirable, and various researchers continue to focus on preparing this functional scaffold and finding new and improved applications; this review highlights some of the most recent and strategic examples regarding the synthesis and properties of different pyrazole derivatives, mainly reported from 2017–present. The discussion involves strategically functionalized rings (i.e., amines, carbaldehydes, halides, etc.) and their use in forming various fused systems, predominantly bicyclic cores with 5:6 fusion taking advantage of our experience in this field and the more recent investigations of our research group.
Collapse
|
5
|
Kumar Rout S, Kastrati A, Jangra H, Schwärzer K, Sunagatullina AS, Garny M, Lima F, Brocklehurst CE, Karaghiosoff K, Zipse H, Knochel P. Reliable Functionalization of 5,6-Fused Bicyclic N-Heterocycles Pyrazolopyrimidines and Imidazopyridazines via Zinc and Magnesium Organometallics. Chemistry 2022; 28:e202200733. [PMID: 35384103 PMCID: PMC9321601 DOI: 10.1002/chem.202200733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 12/20/2022]
Abstract
DFT-calculations allow prediction of the reactivity of uncommon N-heterocyclic scaffolds of pyrazolo[1,5-a]pyrimidines and imidazo[1,2-b]pyridazines and considerably facilitate their functionalization. The derivatization of these N-heterocycles was realized using Grignard reagents for nucleophilic additions to 5-chloropyrazolo[1,5-a]pyrimidines and TMP2 Zn ⋅ 2 MgCl2 ⋅ 2 LiCl allowed regioselective zincations. In the case of 6-chloroimidazo[1,2-b]pyridazine, bases such as TMP2 Zn ⋅ MgCl2 ⋅ 2 LiCl, in the presence or absence of BF3 ⋅ OEt2 , led to regioselective metalations at positions 3 or 8. Subsequent functionalizations were achieved with TMPMgCl ⋅ LiCl, producing various polysubstituted derivatives (up to penta-substitution). X-ray analysis confirmed the regioselectivity for key functional heterocycles.
Collapse
Affiliation(s)
- Saroj Kumar Rout
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Agonist Kastrati
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Harish Jangra
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Kuno Schwärzer
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Alisa S. Sunagatullina
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Maximilien Garny
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Fabio Lima
- Global Discovery ChemistryNovartis Institutes for BioMedical Research4057BaselSwitzerland
| | - Cara E. Brocklehurst
- Global Discovery ChemistryNovartis Institutes for BioMedical Research4057BaselSwitzerland
| | - Konstantin Karaghiosoff
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Hendrik Zipse
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
6
|
Acid Catalyzed N-Alkylation of Pyrazoles with Trichloroacetimidates. ORGANICS 2022. [DOI: 10.3390/org3020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
N-Alkyl pyrazoles are important heterocycles in organic and medicinal chemistry, demonstrating a wide range of biological activity. A new method for the N-alkylation of pyrazoles has been developed using trichloroacetimidate electrophiles and a Brønsted acid catalyst. These reactions provide ready access to N-alkyl pyrazoles which are present in a variety of medicinally relevant lead structures. Benzylic, phenethyl and benzhydryl trichloroacetimidates provide good yields of the N-alkyl pyrazole products. Unsymmetrical pyrazoles provide a mixture of the two possible regioisomers, with the major product being controlled by sterics. This methodology provides an alternative to other alkylation methods that require strong base or high temperature.
Collapse
|