1
|
Ding Y, Pedersen SS, Wang H, Xiang B, Wang Y, Yang Z, Gao Y, Morosan E, Jones MR, Xiao H, Ball ZT. Selective Macrocyclization of Unprotected Peptides with an Ex Situ Gaseous Linchpin Reagent. Angew Chem Int Ed Engl 2024; 63:e202405344. [PMID: 38753429 DOI: 10.1002/anie.202405344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Indexed: 07/16/2024]
Abstract
Peptide cyclization has dramatic effects on a variety of important properties, enhancing metabolic stability, limiting conformational flexibility, and altering cellular entry and intracellular localization. The hydrophilic, polyfunctional nature of peptides creates chemoselectivity challenges in macrocyclization, especially for natural sequences without biorthogonal handles. Herein, we describe a gaseous sulfonyl chloride derived reagent that achieves amine-amine, amine-phenol, and amine-aniline crosslinking through a minimalist linchpin strategy that affords macrocyclic urea or carbamate products. The cyclization reaction is metal-mediated and involves a novel application of sulfine species that remains unexplored in aqueous or biological contexts. The aqueous method delivers unique cyclic or bicyclic topologies directly from a variety of natural bioactive peptides without the need for protecting-group strategies.
Collapse
Affiliation(s)
- Yuxuan Ding
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| | - Simon S Pedersen
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Haofan Wang
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| | - Baorui Xiang
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| | - Yixian Wang
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| | - Zhi Yang
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| | - Yuxiang Gao
- Department of Physics and Astronomy, Rice University, Houston, Texas, 77005, United States
| | - Emilia Morosan
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas, 77005, United States
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| | - Han Xiao
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| | - Zachary T Ball
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| |
Collapse
|
2
|
Dong Y, Wang J, Chen L, Chen H, Dang S, Li F. Aptamer-based assembly systems for SARS-CoV-2 detection and therapeutics. Chem Soc Rev 2024; 53:6830-6859. [PMID: 38829187 DOI: 10.1039/d3cs00774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nucleic acid aptamers are oligonucleotide chains with molecular recognition properties. Compared with antibodies, aptamers show advantages given that they are readily produced via chemical synthesis and elicit minimal immunogenicity in biomedicine applications. Notably, aptamer-encoded nucleic acid assemblies further improve the binding affinity of aptamers with the targets due to their multivalent synergistic interactions. Specially, aptamers can be engineered with special topological arrangements in nucleic acid assemblies, which demonstrate spatial and valence matching towards antigens on viruses, thus showing potential in the detection and therapeutic applications of viruses. This review presents the recent progress on the aptamers explored for SARS-CoV-2 detection and infection treatment, wherein applications of aptamer-based assembly systems are introduced in detail. Screening methods and chemical modification strategies for aptamers are comprehensively summarized, and the types of aptamers employed against different target domains of SARS-CoV-2 are illustrated. The evolution of aptamer-based assembly systems for the detection and neutralization of SARS-CoV-2, as well as the construction principle and characteristics of aptamer-based DNA assemblies are demonstrated. The typically representative works are presented to demonstrate how to assemble aptamers rationally and elaborately for specific applications in SARS-CoV-2 diagnosis and neutralization. Finally, we provide deep insights into the current challenges and future perspectives towards aptamer-based nucleic acid assemblies for virus detection and neutralization in nanomedicine.
Collapse
Affiliation(s)
- Yuhang Dong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Jingping Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Ling Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Haonan Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Shuangbo Dang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|
3
|
Nuruzzaman M, Colella BM, Uzoewulu CP, Meo AE, Gross EJ, Ishizawa S, Sana S, Zhang H, Hoff ME, Medlock BTW, Joyner EC, Sato S, Ison EA, Li Z, Ohata J. Hexafluoroisopropanol as a Bioconjugation Medium of Ultrafast, Tryptophan-Selective Catalysis. J Am Chem Soc 2024; 146:6773-6783. [PMID: 38421958 DOI: 10.1021/jacs.3c13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The past decade has seen a remarkable growth in the number of bioconjugation techniques in chemistry, biology, material science, and biomedical fields. A core design element in bioconjugation technology is a chemical reaction that can form a covalent bond between the protein of interest and the labeling reagent. Achieving chemoselective protein bioconjugation in aqueous media is challenging, especially for generally less reactive amino acid residues, such as tryptophan. We present here the development of tryptophan-selective bioconjugation methods through ultrafast Lewis acid-catalyzed reactions in hexafluoroisopropanol (HFIP). Structure-reactivity relationship studies have revealed a combination of thiophene and ethanol moieties to give a suitable labeling reagent for this bioconjugation process, which enables modification of peptides and proteins in an extremely rapid reaction unencumbered by noticeable side reactions. The capability of the labeling method also facilitated radiofluorination application as well as antibody functionalization. Enhancement of an α-helix by HFIP leads to its compatibility with a certain protein, and this report also demonstrates a further stabilization strategy achieved by the addition of an ionic liquid to the HFIP medium. The nonaqueous bioconjugation approaches allow access to numerous chemical reactions that are unavailable in traditional aqueous processes and will further advance the chemistry of proteins.
Collapse
Affiliation(s)
- Mohammad Nuruzzaman
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Brandon M Colella
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Chiamaka P Uzoewulu
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Alissa E Meo
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Elizabeth J Gross
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Seiya Ishizawa
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sravani Sana
- Department of Radiology and Biomedical Research Imaging Center, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Raleigh, North Carolina 27599, United States
| | - He Zhang
- Department of Radiology and Biomedical Research Imaging Center, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Raleigh, North Carolina 27599, United States
| | - Meredith E Hoff
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Bryce T W Medlock
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Emily C Joyner
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Shinichi Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Elon A Ison
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Raleigh, North Carolina 27599, United States
| | - Jun Ohata
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
4
|
Nizam ZM, Stowe AM, Mckinney JK, Ohata J. Iron-sensitive protein conjugates formed with a Wittig reaction precursor in ionic liquid. Chem Commun (Camb) 2023; 59:12160-12163. [PMID: 37743738 DOI: 10.1039/d3cc03825d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
In this report, formation of protein conjugates with an iron-sensitive enamine linkage is demonstrated through the ionic liquid-based bioconjugation method.
Collapse
Affiliation(s)
- Zeinab M Nizam
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | - Ashton M Stowe
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | - Jada K Mckinney
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | - Jun Ohata
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
| |
Collapse
|
5
|
Photofuel cell-based self-powered biosensor for HER2 detection by integration of plasmonic-metal/conjugated molecule hybrids and electrochemical sandwich structure. Biosens Bioelectron 2023; 220:114850. [DOI: 10.1016/j.bios.2022.114850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022]
|
6
|
Hall YD, Uzoewulu CP, Nizam ZM, Ishizawa S, El-Shaffey HM, Ohata J. Phosphine-mediated three-component bioconjugation of amino- and azidosaccharides in ionic liquids. Chem Commun (Camb) 2022; 58:10568-10571. [DOI: 10.1039/d2cc04013a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioconjugation of carbohydrates has been a challenging task because of their chemical, functional, and structural diversities, and no single chemical modification tool can be universally applicable to all the target substrates in different environments.
Collapse
Affiliation(s)
- Yvonne D. Hall
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Chiamaka P. Uzoewulu
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Zeinab M. Nizam
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Seiya Ishizawa
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Hisham M. El-Shaffey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Jun Ohata
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695, USA
| |
Collapse
|