1
|
Lujan B, Zhang M, Cao Y, Kacker A, Mai L, Wu S, Alexander T, Huang W, Kou KGM. Semisynthesis of bersavine and berbamine derivatives that target the CaMKIIγ:cMyc axis for lymphoma therapy. Org Biomol Chem 2025; 23:4403-4408. [PMID: 40202443 PMCID: PMC12058378 DOI: 10.1039/d5ob00310e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Berbamine, a bisbenzylisoquinoline alkaloid (bisBIA), is a promising lead for developing novel therapeutics to treat aggressive cancers such as lymphoma, by targeting the CaMKIIγ:cMyc axis. Herein, we report an aza-Friedel-Crafts method for ortho-aminoalkylation of berbamine's phenolic motif, enabling the semisynthesis of the natural product bersavine and analogs that complement current methods focusing on modifying the phenolic oxygen. Several new analogs synthesized by this method exhibit potent cytotoxicity against lymphoma-associated cell line H9 exceeding the naturally occurring berbamine (1) and bersavine (3a). A molecular docking analysis was used to devise a model that rationalizes the structure-activity relationship between the novel bisBIA analogs and CaMKIIγ inhibition.
Collapse
Affiliation(s)
- Berkley Lujan
- Department of Chemistry, University of California, Riverside, California 92507, USA.
| | - Mingfeng Zhang
- Department of Diabetes Complications & Metabolism Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Yujie Cao
- Department of Chemistry, University of California, Riverside, California 92507, USA.
| | - Arnav Kacker
- Department of Chemistry, University of California, Riverside, California 92507, USA.
| | - Lina Mai
- Department of Chemistry, University of California, Riverside, California 92507, USA.
| | - Shunquan Wu
- Department of Diabetes Complications & Metabolism Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Taylor Alexander
- Department of Chemistry, University of California, Riverside, California 92507, USA.
- Kyowa Kirin, Inc., 9420 Athena Cir, La Jolla, CA 92037, USA
| | - Wendong Huang
- Department of Diabetes Complications & Metabolism Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Kevin G M Kou
- Department of Chemistry, University of California, Riverside, California 92507, USA.
| |
Collapse
|
2
|
Ni S, Zhou F, Zhang W, Ma J. Dehydrative Alkylation of Phenols with Alcohols via Formation of Triflate. J Org Chem 2024; 89:9861-9866. [PMID: 38917459 DOI: 10.1021/acs.joc.4c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
An efficient synergistic trityl cation ([Ph3C][B(C6F5)4])/triflic anhydride (Tf2O) catalyzed alkylation of phenols with alcohols is reported. Benefiting from the formation of the triflate in situ, cheap and readily available active alcohols can be used as the alkylating reagents, and the reaction proceeds under mild reaction conditions with a broad substrate scope. This protocol enables the synthesis of ortho-selective phenols and 2,4,6-trisubstitued phenols containing three different alkyl groups. tert-Amyl triflate was synthesized, and mechanistic studies support a triflate-mediated alkylation process.
Collapse
Affiliation(s)
- Shengjun Ni
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Shandong 277160, People's Republic of China
| | - Fengyan Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Shandong 277160, People's Republic of China
| | - Wenzhi Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Shandong 277160, People's Republic of China
| | - Jie Ma
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Shandong 277160, People's Republic of China
| |
Collapse
|
3
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
4
|
III R, Lujan B, Martinez A, Manasi R, DeBow JD, Kou KGM. A Fenton Approach to Aromatic Radical Cations and Diarylmethane Synthesis. J Org Chem 2023; 88:15060-15066. [PMID: 37847050 PMCID: PMC10629232 DOI: 10.1021/acs.joc.3c01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 10/18/2023]
Abstract
Manipulating carbon-centered radicals to add to electron-deficient systems is a well-precedented process. By coupling the Fe(II)-mediated Fenton reaction with the Fe(III)-mediated single-electron oxidation of anisolic compounds, we demonstrate how electron-rich carbon-centered radicals can react with electron-rich arenes through a radical-polar cascade pathway. This bioinspired approach produces diarylmethane derivatives from simple unfunctionalized precursors.
Collapse
Affiliation(s)
- Robert
Crowley III
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | | | | | - Roni Manasi
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Justin D. DeBow
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Kevin G. M. Kou
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| |
Collapse
|
5
|
Vijaya Sankar R, Mathew A, Pradhan S, Kuniyil R, Gunanathan C. Ruthenium-Catalyzed Selective α-Alkylation of β-Naphthols using Primary Alcohols: Elucidating the Influence of Base and Water. Chemistry 2023; 29:e202302102. [PMID: 37486957 DOI: 10.1002/chem.202302102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Functionalized arenes and arenols have diverse applications in chemical synthesis and material chemistry. Selective functionalization of arenols is a topic of prime interest. In particular, direct alkylation of arenols using alcohols is a challenging task. In this report, a ruthenium pincer catalyzed direct α-alkylation of β-naphthol using primary alcohols as alkylating reagents is reported. Notably, aryl and heteroaryl methanols and linear and branched aliphatic alcohols underwent selective alkylation reactions, in which water is the only byproduct. Notably, catalytically derived α-alkyl-β-naphthol products displayed high absorbance, emissive properties, and quantum yields (up to 93.2 %). Dearomative bromination on α-alkyl-β-naphthol is demonstrated as a synthetic application. Mechanistic studies indicate that the reaction involves an aldehyde intermediate. DFT studies support this finding and further reveal that a stoichiometric amount of base is required to make the aldol condensation as well as elementary steps required for regeneration of catalytically active species. In situ-generated water molecule from the aldol condensation reaction plays an important role in the regeneration of an active catalyst.
Collapse
Affiliation(s)
- Raman Vijaya Sankar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, India
| | - Abra Mathew
- Department of Chemistry, Indian Institute of Technology Palakkad (IIT Palakkad), Kerala, 678623, India
| | - Subham Pradhan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, India
| | - Rositha Kuniyil
- Department of Chemistry, Indian Institute of Technology Palakkad (IIT Palakkad), Kerala, 678623, India
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, India
| |
Collapse
|