1
|
Liu S, Zhou J, Yu L, Liu Y, Huang Y, Ouyang Y, Liu GK, Xu XH, Shibata N. Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications. Chem Rev 2025; 125:4603-4764. [PMID: 40261821 DOI: 10.1021/acs.chemrev.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fluorine and nitrogen form a successful partnership in organic synthesis, medicinal chemistry, and material sciences. Although fluorine-nitrogen chemistry has a long and rich history, this field has received increasing interest and made remarkable progress over the past two decades, driven by recent advancements in transition metal and organocatalysis and photochemistry. This review, emphasizing contributions from 2015 to 2023, aims to update the state of the art of the synthesis and applications of nitrogen-based organofluorine functional molecules in organic synthesis and medicinal chemistry. In dedicated sections, we first focus on fluorine-containing reagents organized according to the type of fluorine-containing groups attached to nitrogen, including N-F, N-RF, N-SRF, and N-ORF. This review also covers nitrogen-linked fluorine-containing building blocks, catalysts, pharmaceuticals, and agrochemicals, underlining these components' broad applicability and growing importance in modern chemistry.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lu Yu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yingle Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Guo-Kai Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiu-Hua Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Cui FH, Gao LH, Ruan K, Li F, Meng M, Ma K, Lu Z, Fei J, Tian H, Liu LL, Lin YM, Xia H. Fusion of Four Aromatic Rings via an Atom-Mutual-Embedding Strategy to Form a Tetrahexacyclic System. J Am Chem Soc 2025; 147:13601-13609. [PMID: 40227147 DOI: 10.1021/jacs.5c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Skeletal manipulation of aromatic compounds has emerged as a potent tool in synthetic chemistry, but simultaneous multiring manipulation remains largely unexplored due to the inherent complexities of ring and site selectivity. Herein, we report an unprecedented multiring skeletal manipulation that fuses four 5-membered aromatic rings, comprising two organic and two metal-containing aromatic systems, into a novel metal-bridged 6/6/6/6-membered ring scaffold. The sequential ring fusion is accomplished through an atom-mutual-embedding strategy; this strategy entails the stepwise insertion of two nitrogen atoms into separate metal-carbon bonds and simultaneously integrates a metal atom as a bridge across two isoxazole moieties. The presence of a central metal atom is crucial for ensuring precise substrate alignment and enhancing both the ring and site specificity. The resulting tetrahexacyclic products exhibit remarkable stability and superior near-infrared (NIR) functional properties, surpassing those of the precursor compounds. This work not only establishes a conceptual foundation for designing versatile substrate molecules amenable to intricate editing but also contributes to the rational and performance-targeted manipulation of molecular architectures.
Collapse
Affiliation(s)
- Fei-Hu Cui
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Le-Han Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Kaidong Ruan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fei Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Meng Meng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Kexin Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhengyu Lu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiawei Fei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Liu Leo Liu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu-Mei Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Li J, Hu QL, Liu JS, Xiong XF. Triflic Acid-Mediated Chemoselective Indole C2-Heteroarylation of Peptide Tryptophan Residues by Triazine. Org Lett 2024; 26:10928-10933. [PMID: 39648991 DOI: 10.1021/acs.orglett.4c04100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Peptide modification provides opportunities to afford peptides with designed functions. Among the proteogenic amino acids, tryptophan represents an ideal and attractive target for peptide modification because of the exclusive chemical reactivity of its unique indole structure. Herein, we reported an indole C2 position-selective and transition-metal-free modification approach for indole derivatives and tryptophan-containing peptides by triazine derivatives via triflic acid activation and that the incorporated functional group could act as an orthogonal handle for further bioconjugation via an inverse electron demand Diels-Alder reaction.
Collapse
Affiliation(s)
- Jian Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Qi-Long Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, China
| | - Jia-Shu Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, China
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Awasthi A, Tiwari K, Tiwari DK. Tf 2O-mediated [4+2]-annulation of anthranils with 2-chloropyridines: enabling access to pyridoquinazolinones and euxylophoricine B. Chem Commun (Camb) 2024; 60:7749-7752. [PMID: 38973615 DOI: 10.1039/d4cc01821d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
We present an efficient approach for synthesizing pyridoquinazolinones in the presence of triflic anhydride utilizing anthranils and 2-chloropyridines as starting materials. In this process, Tf2O initially activates anthranils forming an electrophilic 1-((trifluoromethyl)sulfonyl)benzo[c]isoxazol-1-ium species. This species undergoes an in situ annulation reaction with 2-chloropyridines, resulting in therapeutically useful pyridoquinazolinones. The reaction is tolerant to various functional groups, allowing access to a wide range of substituted pyridoquinazolinones in good yields. Furthermore, the synthesis of euxylophoricine B, known to be an antitumor agent, was also achieved.
Collapse
Affiliation(s)
- Annapurna Awasthi
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research (CBMR), SGPGIMS Campus, Raibareli Road, Lucknow, UP 226014, India.
- Department of Chemistry, Institute of Science, Banaras Hindu Universiy, 221005, UP, India
| | - Khushboo Tiwari
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research (CBMR), SGPGIMS Campus, Raibareli Road, Lucknow, UP 226014, India.
- Academy of Scientific & Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus Ghaziabad, Uttar Pradesh-201 002, India
| | - Dharmendra Kumar Tiwari
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research (CBMR), SGPGIMS Campus, Raibareli Road, Lucknow, UP 226014, India.
- Academy of Scientific & Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus Ghaziabad, Uttar Pradesh-201 002, India
| |
Collapse
|
5
|
Wu C, Gao Y, Huo Y, Li X, Chen Q, Hu XQ. Ag-Catalyzed Practical Synthesis of N-Acyl Anthranilic Acids from Anthranils and Carboxylic Acids. J Org Chem 2024; 89:3150-3160. [PMID: 38335273 DOI: 10.1021/acs.joc.3c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
A practical synthesis of valuable N-acyl anthranilic acids has been achieved via a silver-catalyzed imino-ketene generation from readily available anthranils and carboxylic acids. A wide range of carboxylic acids including sterically demanding aliphatic carboxylic acids, aromatic carboxylic acids, acrylic acids, and amino acids are compatible in this reaction. Moreover, this method can be used to modify drug molecules and natural products, such as ibuprofen, probenecid, and acetylglycine.
Collapse
Affiliation(s)
- Changshu Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
6
|
Awasthi A, Tiwari K, Yadav P, Bhowmick S, Tiwari DK. Synthesis of 4-styrylquinolines via direct oxidative C3-alkenylation of anthranils under Pd(II) catalysis. Chem Commun (Camb) 2024; 60:2054-2057. [PMID: 38288529 DOI: 10.1039/d3cc05790a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The palladium-catalyzed oxidative C3-alkenylation of anthranils (2,1-benzisoxazoles) with various styrenes has been successfully achieved. The C3-alkenylated anthranils were subsequently utilized in a [4+2]-cycloaddition with in situ generated α,β-unsaturated ketones leading to the synthesis of a diverse range of olefin-containing quinolines. Notably, this reaction exclusively yielded mono-alkenylated products with E-selectivity. The optimized catalytic conditions were compatible with a wide variety of substituted olefins and anthranils, forming various C3-alkenylated anthranils with good yields. To showcase the application of the present methodology, the C3-alkenylated anthranils have been employed as synthons to access a wide range of substituted quinolines.
Collapse
Affiliation(s)
- Annapurna Awasthi
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India. dktiwari.@cbmr.res.in
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, Uttar Pradesh, India
| | - Khushboo Tiwari
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India. dktiwari.@cbmr.res.in
| | - Pushpendra Yadav
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India. dktiwari.@cbmr.res.in
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, Uttar Pradesh, India
| | - Suman Bhowmick
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India. dktiwari.@cbmr.res.in
| | - Dharmendra Kumar Tiwari
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India. dktiwari.@cbmr.res.in
| |
Collapse
|
7
|
Zhao Y, Gao Y, Xie Z, Liao S, Huang J, Huo Y, Chen Q, Li X, Hu XQ. Tf 2O-Promoted Chemoselective C3 Functionalization of Anthranils with Phenols and Thiophenols. J Org Chem 2023. [PMID: 37400425 DOI: 10.1021/acs.joc.3c00722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Different chemoselectivities of phenols and thiophenols were observed in a Tf2O-promoted C3 functionalization of simple anthranils. The reaction of phenols and anthranils gives 3-aryl anthranils via a C-C bond formation, whereas thiophenols afford 3-thio anthranils through a C-S bond formation. Both reactions have a broad substrate scope and tolerate a wide range of functional groups, affording the corresponding products with specific chemoselectivity.
Collapse
Affiliation(s)
- Yupeng Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Zhongke Xie
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shuwei Liao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiebin Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
8
|
Cui Y, Gao Y, Zhao W, Luo Y, Xie H, Huo Y, Hu XQ. NiH-Catalyzed Proximal-Selective Hydroamination of Unactivated Alkenes with Anthranils. J Org Chem 2022; 87:14861-14869. [PMID: 36219840 DOI: 10.1021/acs.joc.2c01592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The regioselective hydroamination of unactivated alkenes is a long-standing challenge in organic synthesis. Herein, we report a NiH-catalyzed proximal-selective hydroamination of unactivated alkenes with 8-aminoquinoline (AQ) as a bidentate auxiliary and anthranils as aminating reagents. A wide range of primary aryl amines bearing an ortho-carbonyl group were installed in both terminal and internal unactivated alkenes, delivering a variety of valuable β- and γ-amino acid building blocks, respectively, with excellent regiocontrol. The utility of this transformation was further demonstrated by the conversion of the multifunctionalized aryl amines into useful N-heterocycles.
Collapse
Affiliation(s)
- Yushan Cui
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Wanxuan Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yinglin Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Haiyi Xie
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei 430074, China
| |
Collapse
|
9
|
Cui F, Li Q, Gao L, Ruan K, Ma K, Chen S, Lu Z, Fei J, Lin Y, Xia H. Condensed Osmaquinolines with NIR‐II Absorption Synthesized by Aryl C−H Annulation and Aromatization. Angew Chem Int Ed Engl 2022; 61:e202211734. [DOI: 10.1002/anie.202211734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Fei‐Hu Cui
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Qian Li
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Le‐Han Gao
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Kaidong Ruan
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Kexin Ma
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Siyuan Chen
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zhengyu Lu
- Shenzhen Grubbs Institute Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Jiawei Fei
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yu‐Mei Lin
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Haiping Xia
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- Shenzhen Grubbs Institute Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
10
|
Zhong Q, Gao H, Wang PL, Zhou C, Miao T, Li H. Electrochemical Site-Selective Alkylation of Azobenzenes with (Thio)Xanthenes. Molecules 2022; 27:4967. [PMID: 35956916 PMCID: PMC9370205 DOI: 10.3390/molecules27154967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 12/10/2022] Open
Abstract
Herein, we first report an electrochemical methodology for the site-selective alkylation of azobenzenes with (thio)xanthenes in the absence of any transition metal catalyst or external oxidant. A variety of groups are compatible with this electrochemical alkylation, which furnishes the products in moderate to good yields.
Collapse
Affiliation(s)
- Qiang Zhong
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| | - Hui Gao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Pei-Long Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
- Information College, Huaibei Normal University, Huaibei 235000, China
| | - Chao Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| | - Tao Miao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|