1
|
Wang C, Liu Y, Wan JP. Construction of Fused Oxacyclic Compounds via Dual α- and β-C-H Functionalization and Ring Decomposition of Cyclic Ethers. Org Lett 2025; 27:3983-3987. [PMID: 40179307 DOI: 10.1021/acs.orglett.5c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
A new synthetic method for the synthesis of bicyclic scaffolds featuring a dihydropyran and tetrahydrofuran (THF) hybrid in the fashion of a fused structure with excellent syn-selectivity is realized via the reactions of enaminones and THF. In addition to displaying a dual role as both a cyclic fragment and a one-carbon synthon, the current method also shows a rarely known mode of two vicinal C-H bonds' functionalization in THF or analogous oxa-heterocycles.
Collapse
Affiliation(s)
- Chenxu Wang
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
2
|
Kikuchi T, Okamura T, Zhang MR. Efficient Reductive N- 11C-Methylation Using Arylamines or Alkylamines and In Situ-Generated [ 11C]Formaldehyde From [ 11C]Methyl Iodide. J Labelled Comp Radiopharm 2024; 67:254-262. [PMID: 38703027 DOI: 10.1002/jlcr.4095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/05/2024] [Accepted: 04/13/2024] [Indexed: 05/06/2024]
Abstract
Reductive N-11C-methylation using [11C]formaldehyde and amines has been used to prepare N-11C-methylated compounds. However, the yields of the N-11C-methylated compounds are often insufficient. In this study, we developed an efficient method for base-free reductive N-11C-methylation that is applicable to a wide variety of substrates, including arylamines bearing electron-withdrawing and electron-donating substituents. A 2-picoline borane complex, which is a stable and mild reductant, was used. Dimethyl sulfoxide was used as the primary reaction solvent, and glacial acetic acid or aqueous acetic acid was used as a cosolvent. While reductive N-11C-methylation efficiently proceeded under anhydrous conditions in most cases, the addition of water to the reductive N-11C-methylation generally increased the yield of the N-11C-methylated compounds. Substrates with hydroxy, carboxyl, nitrile, nitro, ester, amide, and phenone moieties and amine salts were applicable to the reaction. This proposed method for reductive N-11C-methylation should be applicable to a wide variety of substrates, including thermo-labile and base-sensitive compounds because the reaction was performed under relatively mild conditions (70°C) without the need for a base.
Collapse
Affiliation(s)
- Tatsuya Kikuchi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Toshimitsu Okamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
3
|
Lu S, Telu S, Siméon FG, Cai L, Pike VW. Gas Phase Transformations in Carbon-11 Chemistry. Int J Mol Sci 2024; 25:1167. [PMID: 38256240 PMCID: PMC10816134 DOI: 10.3390/ijms25021167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The short-lived positron-emitter carbon-11 (t1/2 = 20.4 min; β+, 99.8%) is prominent for labeling tracers for use in biomedical research with positron emission tomography (PET). Carbon-11 is produced for this purpose with a cyclotron, nowadays almost exclusively by the 14N(p,α)11C nuclear reaction, either on nitrogen containing a low concentration of oxygen (0.1-0.5%) or hydrogen (~5%) to produce [11C]carbon dioxide or [11C]methane, respectively. These primary radioactive products can be produced in high yields and with high molar activities. However, only [11C]carbon dioxide has some utility for directly labeling PET tracers. Primary products are required to be converted rapidly and efficiently into secondary labeling synthons to provide versatile radiochemistry for labeling diverse tracer chemotypes at molecular positions of choice. This review surveys known gas phase transformations of carbon-11 and summarizes the important roles that many of these transformations now play for producing a broad range of labeling synthons in carbon-11 chemistry.
Collapse
Affiliation(s)
| | | | | | | | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm B3C346, 10 Center Drive, Bethesda, MD 20892-1003, USA; (S.L.); (S.T.); (F.G.S.); (L.C.)
| |
Collapse
|
4
|
Pees A, Chassé M, Lindberg A, Vasdev N. Recent Developments in Carbon-11 Chemistry and Applications for First-In-Human PET Studies. Molecules 2023; 28:931. [PMID: 36770596 PMCID: PMC9920299 DOI: 10.3390/molecules28030931] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Positron emission tomography (PET) is a molecular imaging technique that makes use of radiolabelled molecules for in vivo evaluation. Carbon-11 is a frequently used radionuclide for the labelling of small molecule PET tracers and can be incorporated into organic molecules without changing their physicochemical properties. While the short half-life of carbon-11 (11C; t½ = 20.4 min) offers other advantages for imaging including multiple PET scans in the same subject on the same day, its use is limited to facilities that have an on-site cyclotron, and the radiochemical transformations are consequently more restrictive. Many researchers have embraced this challenge by discovering novel carbon-11 radiolabelling methodologies to broaden the synthetic versatility of this radionuclide. This review presents new carbon-11 building blocks and radiochemical transformations as well as PET tracers that have advanced to first-in-human studies over the past five years.
Collapse
Affiliation(s)
- Anna Pees
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Melissa Chassé
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
5
|
Toyohara J, Al-Qahtani M, Huang YY, Cazzola E, Todde S, Furumoto S, Mikolajczak R, Decristoforo C, Gillings N, Yang M, Reilly R, Duatti A, Denkova A, Schirrmacher R, Carlucci G, Seimbille Y, Liu Z, Ellis B, Cornelissen BT, Kopka K, Bernardes E. Highlight selection of radiochemistry and radiopharmacy developments by editorial board. EJNMMI Radiopharm Chem 2022; 7:25. [PMID: 36182995 PMCID: PMC9526771 DOI: 10.1186/s41181-022-00177-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biannual highlight commentary to update the readership on trends in the field of radiopharmaceutical development. MAIN BODY This commentary of highlights has resulted in 21 different topics selected by each coauthoring Editorial Board member addressing a variety of aspects ranging from novel radiochemistry to first in man application of novel radiopharmaceuticals. CONCLUSION Trends in radiochemistry and radiopharmacy are highlighted demonstrating the progress in the research field in various topics including new PET-labelling methods, FAPI-tracers and imaging, and radionuclide therapy being the scope of EJNMMI Radiopharmacy and Chemistry.
Collapse
Affiliation(s)
- Jun Toyohara
- PET Radiopharmaceutical Sciences, Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Mohammed Al-Qahtani
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| | - Ya-Yao Huang
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Emiliano Cazzola
- Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Sacro Cuore-Don Calabria Hospital, Negrar (Vr), Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale Sacro Cuore-Don Calabria, Negrar (Vr), Italia
| | - Sergio Todde
- University of Milano-Bicocca, Tecnomed Foundation, Monza, Italy
| | - Shozo Furumoto
- Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai, Japan
| | - Renata Mikolajczak
- Radioisotope Centre POLATOM, National Centre for Nuclear Research (NCBJ), Otwock, Poland
- Ośrodek Radioizotopów POLATOM, NARODOWE CENTRUM BADAŃ JĄDROWYCH (NCBJ), Otwock, Poland
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Nic Gillings
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu China
| | - Raymond Reilly
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON Canada
| | - Adriano Duatti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
- Dipartimento di Scienze Chimiche, Farmaceutiche e Agrarie Università di Ferrara, Ferrara, Italia
| | - Antonia Denkova
- Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands
| | - Ralf Schirrmacher
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB Canada
| | - Giuseppe Carlucci
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Zhaofei Liu
- Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Centre, Beijing, China
| | - Beverley Ellis
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Bart T. Cornelissen
- Department of Nuclear Medicine and Molecular Imaging, Groningen (UMCG), University Medical Center, University of Groningen, Groningen, The Netherlands
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Emerson Bernardes
- Energy and Nuclear Research Institute (IPEN-CNEN/SP), Cidade Universitária, São Paulo, Brazil
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), Cidade Universitária, São Paulo, Brasil
| |
Collapse
|
6
|
Okamura T, Tsukamoto S, Okada M, Kikuchi T, Aizawa R, Wakizaka H, Nengaki N, Ogawa M, Ishii H, Zhang MR. 11C-Labeled Radiotracer for Noninvasive and Quantitative Assessment of the Thiocyanate Efflux System in the Brain. Bioconjug Chem 2022; 33:1654-1662. [PMID: 35951365 DOI: 10.1021/acs.bioconjchem.2c00277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thiocyanate (SCN-) alters the potency of certain agonists for the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, and dysfunctions in AMPA receptor signaling are considered to underlie a number of neurological diseases. While humans may be exposed to SCN- from the environment, including food sources, a carrier-mediated system transports SCN- from the brain into the blood and is an important regulator of SCN- distribution in the central nervous system. The assessment of this SCN- efflux system in the brain would thus be useful for understanding the mechanisms underlying the neurotoxicity of SCN- and for elucidating the relationship between the efflux system and brain diseases. However, the currently available technique for studying SCN- efflux is severely limited by its invasiveness. Here, we describe the development of a SCN- protracer, 9-pentyl-6-[11C]thiocyanatopurine ([11C]1), to overcome this limitation. [11C]1 was synthesized by the reaction of the iodo-precursor and [11C]SCN- or the reaction of the disulfide precursor with [11C]NH4CN. The protracer [11C]1 entered the brain after intravenous injection into mice and was rapidly metabolized to [11C]SCN-, which was then eliminated from the brain. The efflux of [11C]SCN- was dose-dependently inhibited by perchlorate, a monovalent anion, and the highest dose caused an 82% reduction in the efflux rate. Our findings demonstrate that [11C]1 can be used for the noninvasive and quantitative assessment of the SCN- efflux system in the brain.
Collapse
Affiliation(s)
- Toshimitsu Okamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Satoshi Tsukamoto
- Laboratory of Animal and Genome Sciences Section, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Maki Okada
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tatsuya Kikuchi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ryutaro Aizawa
- Laboratory of Animal and Genome Sciences Section, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hidekatsu Wakizaka
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nobuki Nengaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,SHI Accelerator Service, Ltd., 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Masanao Ogawa
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,SHI Accelerator Service, Ltd., 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Hideki Ishii
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|