1
|
Wang Y, Chen H, Xie L, Liu J, Zhang L, Yu J. Swarm Autonomy: From Agent Functionalization to Machine Intelligence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312956. [PMID: 38653192 PMCID: PMC11733729 DOI: 10.1002/adma.202312956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Swarm behaviors are common in nature, where individual organisms collaborate via perception, communication, and adaptation. Emulating these dynamics, large groups of active agents can self-organize through localized interactions, giving rise to complex swarm behaviors, which exhibit potential for applications across various domains. This review presents a comprehensive summary and perspective of synthetic swarms, to bridge the gap between the microscale individual agents and potential applications of synthetic swarms. It is begun by examining active agents, the fundamental units of synthetic swarms, to understand the origins of their motility and functionality in the presence of external stimuli. Then inter-agent communications and agent-environment communications that contribute to the swarm generation are summarized. Furthermore, the swarm behaviors reported to date and the emergence of machine intelligence within these behaviors are reviewed. Eventually, the applications enabled by distinct synthetic swarms are summarized. By discussing the emergent machine intelligence in swarm behaviors, insights are offered into the design and deployment of autonomous synthetic swarms for real-world applications.
Collapse
Affiliation(s)
- Yibin Wang
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Hui Chen
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Leiming Xie
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Jinbo Liu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Li Zhang
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong Kong999077China
| | - Jiangfan Yu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| |
Collapse
|
2
|
Senyuk B, Wu JS, Smalyukh II. Out-of-equilibrium interactions and collective locomotion of colloidal spheres with squirming of nematoelastic multipoles. Proc Natl Acad Sci U S A 2024; 121:e2322710121. [PMID: 38652740 PMCID: PMC11067049 DOI: 10.1073/pnas.2322710121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
Many living and artificial systems show similar emergent behavior and collective motions on different scales, starting from swarms of bacteria to synthetic active particles, herds of mammals, and crowds of people. What all these systems often have in common is that new collective properties like flocking emerge from interactions between individual self-propelled or driven units. Such systems are naturally out-of-equilibrium and propel at the expense of consumed energy. Mimicking nature by making self-propelled or externally driven particles and studying their individual and collective motility may allow for deeper understanding of physical underpinnings behind collective motion of large groups of interacting objects or beings. Here, using a soft matter system of colloids immersed into a liquid crystal, we show that resulting so-called nematoelastic multipoles can be set into a bidirectional locomotion by external oscillating electric fields. Out-of-equilibrium elastic interactions between such colloidal objects lead to collective flock-like behaviors emerging from time-varying elasticity-mediated interactions between externally driven propelling particles. Repulsive elastic interactions in the equilibrium state can be turned into attractive interactions in the out-of-equilibrium state under applied external electric fields. We probe this behavior at different number densities of colloidal particles and show that particles in dense dispersions collectively select the same direction of a coherent motion due to elastic interactions between near neighbors. In our experimentally implemented design, their motion is highly ordered and without clustering or jamming often present in other colloidal transport systems, which is promising for technological and fundamental-science applications, like nano-cargo transport, out-of-equilibrium assembly, and microrobotics.
Collapse
Affiliation(s)
- Bohdan Senyuk
- Department of Physics, University of Colorado, Boulder, CO80309
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM), Hiroshima University, Higashi-Hiroshima, Hiroshima739-0046, Japan
| | - Jin-Sheng Wu
- Department of Physics, University of Colorado, Boulder, CO80309
| | - Ivan I. Smalyukh
- Department of Physics, University of Colorado, Boulder, CO80309
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM), Hiroshima University, Higashi-Hiroshima, Hiroshima739-0046, Japan
- Materials Science and Engineering Program, University of Colorado, Boulder, CO80309
- Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado, Boulder, CO80309
| |
Collapse
|
3
|
Rajabi M, Turiv T, Li BX, Baza H, Golovaty D, Lavrentovich OD. High-Order Nonlinear Electrophoresis in a Nematic Liquid Crystal. PHYSICAL REVIEW LETTERS 2024; 132:158102. [PMID: 38682980 DOI: 10.1103/physrevlett.132.158102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/21/2024] [Indexed: 05/01/2024]
Abstract
Electrophoresis is the motion of particles relative to a surrounding fluid driven by a uniform electric field. In conventional electrophoresis, the electrophoretic velocity grows linearly with the applied field. Nonlinear effects with a quadratic speed vs field dependence are gaining research interest since an alternating current field could drive them. Here, we report on the giant nonlinearity of electrophoresis in a nematic liquid crystal in which the speed grows with the fourth and sixth powers of the electric field. The mechanism is attributed to the shear thinning of the nematic environment induced by the moving colloid. The observed giant nonlinear effect dramatically enhances the efficiency of electrophoretic transport.
Collapse
Affiliation(s)
- Mojtaba Rajabi
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA
- Department of Physics, Kent State University, Kent, Ohio 44242, USA
| | - Taras Turiv
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA
| | - Bing-Xiang Li
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Hend Baza
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA
- Department of Physics, Kent State University, Kent, Ohio 44242, USA
| | - Dmitry Golovaty
- Department of Mathematics, The University of Akron, Akron, Ohio 44325-4002, USA
| | - Oleg D Lavrentovich
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA
- Department of Physics, Kent State University, Kent, Ohio 44242, USA
- Materials Science Graduate Program, Kent State University, Kent, Ohio 44242, USA
| |
Collapse
|
4
|
Ignés-Mullol J, Sagués F. Experiments with active and driven synthetic colloids in complex fluids. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Yao T, Kos Ž, Zhang QX, Luo Y, Steager EB, Ravnik M, Stebe KJ. Topological defect-propelled swimming of nematic colloids. SCIENCE ADVANCES 2022; 8:eabn8176. [PMID: 36001658 PMCID: PMC10939095 DOI: 10.1126/sciadv.abn8176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Topological defects on colloids rotating in nematic liquid crystals form far-from-equilibrium structures that perform complex swim strokes in which the defects periodically extend, depin, and contract. These defect dynamics propel the colloid, generating translation from rotation. The swimmer's speed and direction are determined by the topological defect's polarity and extent of elongation. Defect elongation is controlled by a rotating external magnetic field, allowing control over particle trajectories. The swimmers' translational motion relies on broken symmetries associated with lubrication forces between the colloid and the bounding surfaces, line tensions associated with the elongated defect, and anisotropic viscosities associated with the defect elongation adjacent to the colloid. The scattering or effective pair interaction of these swimmers is highly anisotropic, with polarization-dependent dimer stability and motion that depend strongly on entanglement and sharing of their extended defect structures. This research introduces transient, far-from-equilibrium topological defects as a class of virtual functional structures that generate modalities of motion and interaction.
Collapse
Affiliation(s)
- Tianyi Yao
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Žiga Kos
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Qi Xing Zhang
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yimin Luo
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Edward B. Steager
- Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Miha Ravnik
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
- Condensed Matter Physics Department, J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Kathleen J. Stebe
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Senyuk B, Meng C, Smalyukh II. Design and Preparation of Nematic Colloidal Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9099-9118. [PMID: 35866261 DOI: 10.1021/acs.langmuir.2c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Colloidal systems are abundant in technology, in biomedical settings, and in our daily life. The so-called "colloidal atoms" paradigm exploits interparticle interactions to self-assemble colloidal analogs of atomic and molecular crystals, liquid crystal glasses, and other types of condensed matter from nanometer- or micrometer-sized colloidal building blocks. Nematic colloids, which comprise colloidal particles dispersed within an anisotropic nematic fluid host medium, provide a particularly rich variety of physical behaviors at the mesoscale, not only matching but even exceeding the diversity of structural and phase behavior in conventional atomic and molecular systems. This feature article, using primarily examples of works from our own group, highlights recent developments in the design, fabrication, and self-assembly of nematic colloidal particles, including the capabilities of preprogramming their behavior by controlling the particle's surface boundary conditions for liquid crystal molecules at the colloidal surfaces as well as by defining the shape and topology of the colloidal particles. Recent progress in defining particle-induced defects, elastic multipoles, self-assembly, and dynamics is discussed along with open issues and challenges within this research field.
Collapse
Affiliation(s)
- Bohdan Senyuk
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - Cuiling Meng
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - Ivan I Smalyukh
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Soft Materials Research Center and Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
- Chemical Physics Program, Departments of Chemistry and Physics, University of Colorado, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|