1
|
Honaryar H, Amirfattahi S, Nguyen D, Kim K, Shillcock JC, Niroobakhsh Z. A Versatile Approach to Stabilize Liquid-Liquid Interfaces using Surfactant Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403013. [PMID: 38874067 DOI: 10.1002/smll.202403013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Stabilizing liquid-liquid interfaces, whether between miscible or immiscible liquids, is crucial for a wide range of applications, including energy storage, microreactors, and biomimetic structures. In this study, a versatile approach for stabilizing the water-oil interface is presented using the morphological transitions that occur during the self-assembly of anionic, cationic, and nonionic surfactants mixed with fatty acid oils. The morphological transitions underlying this approach are characterized and extensively studied through small-angle X-ray scattering (SAXS), rheometry, and microscopy techniques. Dissipative particle dynamics (DPD) as a simulation tool is adopted to investigate these morphological transitions both in the equilibrium ternary system as well as in the dynamic condition of the water-oil interface. Such a versatile strategy holds promise for enhancing applications such as liquid-in-liquid 3D printing. Moreover, it has the potential to revolutionize a wide range of fields where stabilizing liquid-liquid interfaces not only offers unprecedented opportunities for fine-tuning nanostructural morphologies but also imparts interesting practical features to the resulting liquid shapes. These features include perfusion capabilities, self-healing, and porosity, which could have significant implications for various industries.
Collapse
Affiliation(s)
- Houman Honaryar
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Saba Amirfattahi
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Duoc Nguyen
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Kyungtae Kim
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Julian C Shillcock
- Laboratory for Biomolecular Modeling, École Polytechnique Federale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
- Blue Brain Project, École Polytechnique Federale de Lausanne (EPFL), Campus Biotech, Geneva, CH-1202, Switzerland
| | - Zahra Niroobakhsh
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| |
Collapse
|
2
|
Honaryar H, Amirfattahi S, Niroobakhsh Z. Associative Liquid-In-Liquid 3D Printing Techniques for Freeform Fabrication of Soft Matter. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206524. [PMID: 36670057 DOI: 10.1002/smll.202206524] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Shaping soft materials into prescribed 3D complex designs has been challenging yet feasible using various 3D printing technologies. For a broader range of soft matters to be printable, liquid-in-liquid 3D printing techniques have emerged in which an ink phase is printed into 3D constructs within a bath. Most of the attention in this field has been focused on using a support bath with favorable rheology (i.e., shear-thinning behavior) which limits the selection of materials, impeding the broad application of such techniques. However, a growing body of work has begun to leverage the interaction or association of the two involved phases (specifically at the liquid-liquid interface) to fabricate complex constructs from a myriad of soft materials with practical structural, mechanical, optical, magnetic, and communicative properties. This review article has provided an overview of the studies on such associative liquid-in-liquid 3D printing techniques along with their fundamentals, underlying mechanisms, various characterization techniques used for ensuring the structural stability, and practical properties of prints. Also, the future paths with the potential applications are discussed.
Collapse
Affiliation(s)
- Houman Honaryar
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Saba Amirfattahi
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Zahra Niroobakhsh
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| |
Collapse
|
3
|
Akinjole O, Honaryar H, Coulibaly FS, Niroobakhsh Z, Youan BBC. Rheological analysis of a novel phenylboronic acid-closomer gel. Int J Pharm 2022; 626:122070. [PMID: 36041591 DOI: 10.1016/j.ijpharm.2022.122070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/30/2022]
Abstract
This study aims to characterize the rheological behavior of a novel phenylboronic acid (PBA)-based closomer nanoconjugate (Closogel) with potential application in pharmaceutical formulation. PBA was used as a cross-linking agent and model (antiviral) drug. The PBA loaded Closogel chemical structure was analyzed by boron (11B) NMR and Fourier transform infrared (FTIR) spectroscopy. The Closogel and control hydroxyethyl cellulose (HEC) gel were analyzed under oscillatory and continuous shear rheometry followed by mathematical modeling to characterize the gel flow behavior. The chemical analysis confirmed the existence of characteristic borate esters peaks and Boron chemical shifts within Closogel spectra. Due to its more flexible molecular structure, undiluted Closogel exhibited lower, yield stress, viscosity and relaxation time (30 Pa &163 Pa.s & 0.21 s vs 45 Pa &301 Pa.s & 0.39 s for HEC). Both Closogel and HEC gels exhibited a thixotropic behavior. The plastic undiluted and pseudoplastic 2.5 % w/v aqueous Closogels were more viscous than elastic (tan (δ) > 1) in the linear viscoelastic range. The Herschel-Bulkley model showed a significant fitting to all experimental data (R2 > 0.95). The 0.25 % w/v aqueous Closogel nearly exhibited a Newtonian behavior with a flow index of 0.93. These data suggest that PBA loaded Closomer-based gels have similar rheological behavior, with lower complex modulus than that of HEC gels, and they can be a promising platform used for delivery of topical antiviral or other bioactive agents.
Collapse
Affiliation(s)
- Omowumi Akinjole
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, 2464 Charlotte, Kansas City 64108, MO, USA.
| | - Houman Honaryar
- School of Computing and Engineering, University of Missouri - Kansas City, 5100 Rockhill Road, Kansas City 64110, MO, USA.
| | - Fohona S Coulibaly
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, 2464 Charlotte, Kansas City 64108, MO, USA.
| | - Zahra Niroobakhsh
- School of Computing and Engineering, University of Missouri - Kansas City, 5100 Rockhill Road, Kansas City 64110, MO, USA.
| | - Bi-Botti C Youan
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, 2464 Charlotte, Kansas City 64108, MO, USA.
| |
Collapse
|