1
|
Acosta S, Rodríguez‐Alonso P, Chaskovska V, Fernández‐Fernández J, Rodríguez‐Cabello JC. Spontaneous Self-Organized Order Emerging From Intrinsically Disordered Protein Polymers. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70003. [PMID: 39950263 PMCID: PMC11826379 DOI: 10.1002/wnan.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/24/2024] [Accepted: 12/10/2024] [Indexed: 02/16/2025]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that, despite lacking a defined 3D structure, are capable of adopting dynamic conformations. This structural adaptability allows them to play not only essential roles in crucial cellular processes, such as subcellular organization or transcriptional control, but also in coordinating the assembly of macromolecules during different stages of development. Thus, in order to artificially replicate the complex processes of morphogenesis and their dynamics, it is crucial to have materials that recapitulate the structural plasticity of IDPs. In this regard, intrinsically disordered protein polymers (IDPPs) emerge as promising materials for engineering synthetic condensates and creating hierarchically self-assembled materials. IDPPs exhibit remarkable properties for their use in biofabrication, such as functional versatility, tunable sequence order-disorder, and the ability to undergo liquid-liquid phase separation (LLPS). Recent research has focused on harnessing the intrinsic disorder of IDPPs to design complex protein architectures with tailored properties. Taking advantage of their stimuli-responsiveness and degree of disorder, researchers have developed innovative strategies to control the self-assembly of IDPPs, resulting in the creation of hierarchically organized structures and intricate morphologies. In this review, we aim to provide an overview of the latest advances in the design and application of IDPP-based materials, shedding light on the fundamental principles that control their supramolecular assembly, and discussing their application in the biomedical and nanobiotechnological fields.
Collapse
Affiliation(s)
- Sergio Acosta
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), Laboratory for Disruptive Interdisciplinary Science (LaDIS), CIBER‐BBN, Edificio LUCIA, Universidad de ValladolidValladolidSpain
| | - Pablo Rodríguez‐Alonso
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), Laboratory for Disruptive Interdisciplinary Science (LaDIS), CIBER‐BBN, Edificio LUCIA, Universidad de ValladolidValladolidSpain
- Technical Proteins Nanobiotechnology S.L.ValladolidSpain
| | - Viktoriya Chaskovska
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), Laboratory for Disruptive Interdisciplinary Science (LaDIS), CIBER‐BBN, Edificio LUCIA, Universidad de ValladolidValladolidSpain
| | - Julio Fernández‐Fernández
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), Laboratory for Disruptive Interdisciplinary Science (LaDIS), CIBER‐BBN, Edificio LUCIA, Universidad de ValladolidValladolidSpain
| | - José Carlos Rodríguez‐Cabello
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), Laboratory for Disruptive Interdisciplinary Science (LaDIS), CIBER‐BBN, Edificio LUCIA, Universidad de ValladolidValladolidSpain
| |
Collapse
|
2
|
Luo R, Xiang X, Jiao Q, Hua H, Chen Y. Photoresponsive Hydrogels for Tissue Engineering. ACS Biomater Sci Eng 2024; 10:3612-3630. [PMID: 38816677 DOI: 10.1021/acsbiomaterials.4c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Hydrophilic and biocompatible hydrogels are widely applied as ideal scaffolds in tissue engineering. The "smart" gelation material can alter its structural, physiochemical, and functional features in answer to various endo/exogenous stimuli to better biomimic the endogenous extracellular matrix for the engineering of cells and tissues. Light irradiation owns a high spatial-temporal resolution, complete biorthogonal reactivity, and fine-tunability and can thus induce physiochemical reactions within the matrix of photoresponsive hydrogels with good precision, efficiency, and safety. Both gel structure (e.g., geometry, porosity, and dimension) and performance (like conductivity and thermogenic or mechanical properties) can hence be programmed on-demand to yield the biochemical and biophysical signals regulating the morphology, growth, motility, and phenotype of engineered cells and tissues. Here we summarize the strategies and mechanisms for encoding light-reactivity into a hydrogel and demonstrate how fantastically such responsive gels change their structure and properties with light irradiation as desired and thus improve their applications in tissue engineering including cargo delivery, dynamic three-dimensional cell culture, and tissue repair and regeneration, aiming to provide a basis for more and better translation of photoresponsive hydrogels in the clinic.
Collapse
Affiliation(s)
- Rui Luo
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Xianjing Xiang
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Qiangqiang Jiao
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Hui Hua
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Yuping Chen
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
3
|
Wang HY, Zhang Y, Zhang M, Zhang YQ. Functional modification of silk fibroin from silkworms and its application to medical biomaterials: A review. Int J Biol Macromol 2024; 259:129099. [PMID: 38176506 DOI: 10.1016/j.ijbiomac.2023.129099] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Silk fibroin (SF) from the silkworm Bombyx mori is a fibrous protein identified as a widely suitable biomaterial due to its biocompatibility, tunable degradation, and mechanical strength. Various modifications of SF protein can give SF fibers new properties and functions, broadening their applications in textile and biomedical industries. A diverse array of functional modifications on various forms of SF has been reported. In order to provide researchers with a more systematic understanding of the types of functional modifications of SF protein, as well as the corresponding applications, we comprehensively review the different types of functional modifications, including transgenic modification, modifications with chemical groups or biologically active substance, cross-linking and copolymerization without chemical reactions, their specific modification methods and applications. Furthermore, recent applications of SF in various medical biomaterials are briefly discussed.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Obstetrical department, The People's Hospital of Suzhou New District, Suzhou, China
| | - Yun Zhang
- Obstetrical department, The People's Hospital of Suzhou New District, Suzhou, China
| | - Meng Zhang
- Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yu-Qing Zhang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Noh Y, Son E, Cha C. Exploring stimuli-responsive elastin-like polypeptide for biomedicine and beyond: potential application as programmable soft actuators. Front Bioeng Biotechnol 2023; 11:1284226. [PMID: 37965051 PMCID: PMC10642932 DOI: 10.3389/fbioe.2023.1284226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
With the emergence of soft robotics, there is a growing need to develop actuator systems that are lightweight, mechanically compliant, stimuli-responsive, and readily programmable for precise and intelligent operation. Therefore, "smart" polymeric materials that can precisely change their physicomechanical properties in response to various external stimuli (e.g., pH, temperature, electromagnetic force) are increasingly investigated. Many different types of polymers demonstrating stimuli-responsiveness and shape memory effect have been developed over the years, but their focus has been mostly placed on controlling their mechanical properties. In order to impart complexity in actuation systems, there is a concerted effort to implement additional desired functionalities. For this purpose, elastin-like polypeptide (ELP), a class of genetically-engineered thermoresponsive polypeptides that have been mostly utilized for biomedical applications, is being increasingly investigated for stimuli-responsive actuation. Herein, unique characteristics and biomedical applications of ELP, and recent progress on utilizing ELP for programmable actuation are introduced.
Collapse
Affiliation(s)
| | | | - Chaenyung Cha
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
5
|
Wei X, Wu Q, Chen L, Sun Y, Chen L, Zhang C, Li S, Ma C, Jiang S. Remotely Controlled Light/Electric/Magnetic Multiresponsive Hydrogel for Fast Actuations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10030-10043. [PMID: 36779704 DOI: 10.1021/acsami.2c22831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As a kind of soft smart material, hydrogel actuators have extensive development prospects, but it is still difficult for these actuators to integrate multiresponsiveness, multiple remote actuation, high strength, fast responsiveness, and programmable complex deformation. Herein, we have explored an anisotropic bilayer hydrogel actuator with an Fe3O4/co-poly(isopropylacrylamide-4-benzoylphenyl acrylate) [Fe3O4/P(NIPAM-ABP)] active layer and an isotropic conductive adhesive (ICAs) passive layer based on the layer-by-layer method. Benefiting from the fibrosis and porosity of the Fe3O4/P(NIPAM-ABP) hydrogel, the ICAs-Fe3O4/P(NIPAM-ABP) hydrogel actuator has excellent mechanical strength (tensile strength of 3.1 ± 0.3 MPa) and response speed (temperature (45 °C): bending speed of 2400.3°/s; near-infrared (NIR) light: bending speed of 356.4°/s; electricity (2 V): bending speed of 180°/s; water (10 °C): recovery speed of 30.0°/s). In addition, the good photothermal properties and magnetic conductivity of Fe3O4 nanoparticles provide precise remotely controllable light- and magnetic-actuated properties for the hydrogel actuator. The Ag microsheets with excellent conductivity (1.4 × 104 S/cm) provide remotely controllable electrical-actuated property for the hydrogel actuator. Combined with the responsiveness of P(NIPAM-ABP), the actuator can achieve short-range actuation including temperature-, ethanol-, and salt-responses. More importantly, it can achieve remote actuation including light, electrical, and magnetic responses. Finally, the Fe3O4/P(NIPAM-ABP) fibers can provide excellent anisotropic structures for the actuator to achieve precise deformational programmability. Inspired by some phenomena in nature, several actuating devices with the above characteristics have been successfully developed. This study can provide a general method for multifunctional anisotropic hydrogel actuators and will provide a new strategy for exploring smart materials suitable for complex bioinspired systems.
Collapse
Affiliation(s)
- Xianshuo Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qijun Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lian Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Lin Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610000, China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Key Laboratory of quality safe evaluation and research of degradable material for State Market Regulation, Products Quality Supervision and Testing Institute of Hainan Province, Haikou 570203, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Huang YC, Cheng QP, Jeng US, Hsu SH. A Biomimetic Bilayer Hydrogel Actuator Based on Thermoresponsive Gelatin Methacryloyl-Poly( N-isopropylacrylamide) Hydrogel with Three-Dimensional Printability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5798-5810. [PMID: 36633046 DOI: 10.1021/acsami.2c18961] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Development of hydrogel-based actuators with programmable deformation is an important topic that arouses much attention in fundamental and applied research. Most of these actuators are nonbiodegradable or work under nonphysiological conditions. Herein, a temperature-responsive and biodegradable gelatin methacryloyl (GelMA)-poly(N-isopropylacrylamide) hydrogel (i.e., GN hydrogel) network was explored as the active layer of a bilayer actuator. Small-angle X-ray scattering (SAXS) revealed that the GN hydrogel formed a mesoglobular structure (∼230 Å) upon a thermally induced phase transition. Rheological data supported that the GN hydrogel possessed 3D printability and tunable mechanical properties. A bilayer hydrogel actuator composed of active GN and passive GelMA layers was optimized by varying the layer thickness and compositions to achieve large, reproducible, and anisotropic bending with a curvature of ∼5.5 cm-1. Different patterns of the active layer were designed for actuation in programmable control. The 3D printed GN hydrogel constructs showed significant volume reduction (∼25-60% depending on construct design) at 37 °C with the resolution enhanced by the thermo-triggered actuation, while they were able to fully reswell at room temperature. A more intricate 3D printed butterfly actuator demonstrated the ability to mimic the wing movement through thermoresponsiveness. Furthermore, myoblasts laden in the GN hydrogel exhibited significant proliferation of ∼376% in 14 days. This study provides a new fabrication approach for developing biomimetic devices, artificial muscles, and soft robotics for biomedical applications.
Collapse
Affiliation(s)
- Yu-Chen Huang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei10617, Taiwan, ROC
| | - Qian-Pu Cheng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei10617, Taiwan, ROC
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu30076, Taiwan, ROC
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei10617, Taiwan, ROC
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| |
Collapse
|
7
|
Affiliation(s)
| | - Brian R. James
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Lee KY, Loh HX, Wan ACA. Systems for Muscle Cell Differentiation: From Bioengineering to Future Food. MICROMACHINES 2021; 13:71. [PMID: 35056236 PMCID: PMC8777594 DOI: 10.3390/mi13010071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022]
Abstract
In light of pressing issues, such as sustainability and climate change, future protein sources will increasingly turn from livestock to cell-based production and manufacturing activities. In the case of cell-based or cultured meat a relevant aspect would be the differentiation of muscle cells into mature muscle tissue, as well as how the microsystems that have been developed to date can be developed for larger-scale cultures. To delve into this aspect we review previous research that has been carried out on skeletal muscle tissue engineering and how various biological and physicochemical factors, mechanical and electrical stimuli, affect muscle cell differentiation on an experimental scale. Material aspects such as the different biomaterials used and 3D vs. 2D configurations in the context of muscle cell differentiation will also be discussed. Finally, the ability to translate these systems to more scalable bioreactor configurations and eventually bring them to a commercial scale will be touched upon.
Collapse
Affiliation(s)
| | | | - Andrew C. A. Wan
- Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, #01-02, Nanos, Singapore 138669, Singapore; (K.-Y.L.); (H.-X.L.)
| |
Collapse
|