1
|
Modi SK, Mohapatra P, Bhatt P, Singh A, Parmar AS, Roy A, Joshi V, Singh MS. Targeting tumor microenvironment with photodynamic nanomedicine. Med Res Rev 2025; 45:66-96. [PMID: 39152568 DOI: 10.1002/med.22072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/20/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
Photodynamic therapy (PDT) is approved for the treatment of certain cancers and precancer lesions. While early Photosensitizers (PS) have found their way to the clinic, research in the last two decades has led to the development of third-generation PS, including photodynamic nanomedicine for improved tumor delivery and minimal systemic or phototoxicity. In terms of nanoparticle design for PDT, we are witnessing a shift from passive to active delivery for improved outcomes with reduced PS dosage. Tumor microenvironment (TME) comprises of a complex and dynamic landscape with myriad potential targets for photodynamic nanocarriers that are surface-modified with ligands. Herein, we review ways to improvise PDT by actively targeting nanoparticles (NPs) to intracellular organelles such as mitochondria or lysosomes and so forth, overcoming the limitations caused by PDT-induced hypoxia, disrupting the blood vascular networks in tumor tissues-vascular targeted PDT (VTP) and targeting immune cells for photoimmunotherapy. We propose that a synergistic outlook will help to address challenges such as deep-seated tumors, metastasis, or relapse and would lead to robust PDT response in patients.
Collapse
Affiliation(s)
- Suraj Kumar Modi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Center of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, London, UK
| | - Pragyan Mohapatra
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, India
- Interdisciplinary Center for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Priya Bhatt
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, India
- Interdisciplinary Center for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Aishleen Singh
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Avanish Singh Parmar
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani Campus, Pilani, Rajasthan, India
| | - Vibhuti Joshi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Center of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Manu Smriti Singh
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, India
- Interdisciplinary Center for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| |
Collapse
|
2
|
Wei K, Wu Y, Zheng X, Ouyang L, Ma G, Ji C, Yin M. A Light-Triggered J-Aggregation-Regulated Therapy Conversion: from Photodynamic/Photothermal Therapy to Long-Lasting Chemodynamic Therapy for Effective Tumor Ablation. Angew Chem Int Ed Engl 2024; 63:e202404395. [PMID: 38577995 DOI: 10.1002/anie.202404395] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
Reactive oxygen species (ROS) have become an effective tool for tumor treatment. The combination of photodynamic therapy (PDT) and chemodynamic therapy (CDT) takes advantage of various ROS and enhances therapeutic effects. However, the activation of CDT usually occurs before PDT, which hinders the sustained maintenance of hydroxyl radicals (⋅OH) and reduces the treatment efficiency. Herein, we present a light-triggered nano-system based on molecular aggregation regulation for converting cancer therapy from PDT/photothermal therapy (PTT) to a long-lasting CDT. The ordered J-aggregation enhances the photodynamic properties of the cyanine moiety while simultaneously suppressing the chemodynamic capabilities of the copper-porphyrin moiety. Upon light irradiation, Cu-PCy JNPs demonstrate strong photodynamic and photothermal effects. Meanwhile, light triggers a rapid degradation of the cyanine backbone, leading to the destruction of the J-aggregation. As a result, a long-lasting CDT is sequentially activated, and the sustained generation of ⋅OH is observed for up to 48 hours, causing potent cellular oxidative stress and apoptosis. Due to their excellent tumor accumulation, Cu-PCy JNPs exhibit effective in vivo tumor ablation through the converting therapy. This work provides a new approach for effectively prolonging the chemodynamic activity in ROS-based cancer therapy.
Collapse
Affiliation(s)
- Kai Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Yanxin Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Xian Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Li Ouyang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Guiping Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| |
Collapse
|
3
|
Gnocchi D, Nikolic D, Paparella RR, Sabbà C, Mazzocca A. Cellular Adaptation Takes Advantage of Atavistic Regression Programs during Carcinogenesis. Cancers (Basel) 2023; 15:3942. [PMID: 37568758 PMCID: PMC10416974 DOI: 10.3390/cancers15153942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Adaptation of cancer cells to extreme microenvironmental conditions (i.e., hypoxia, high acidity, and reduced nutrient availability) contributes to cancer resilience. Furthermore, neoplastic transformation can be envisioned as an extreme adaptive response to tissue damage or chronic injury. The recent Systemic-Evolutionary Theory of the Origin of Cancer (SETOC) hypothesizes that cancer cells "revert" to "primitive" characteristics either ontogenically (embryo-like) or phylogenetically (single-celled organisms). This regression may confer robustness and maintain the disordered state of the tissue, which is a hallmark of malignancy. Changes in cancer cell metabolism during adaptation may also be the consequence of altered microenvironmental conditions, often resulting in a shift toward lactic acid fermentation. However, the mechanisms underlying the robust adaptive capacity of cancer cells remain largely unknown. In recent years, cancer cells' metabolic flexibility has received increasing attention among researchers. Here, we focus on how changes in the microenvironment can affect cancer cell energy production and drug sensitivity. Indeed, changes in the cellular microenvironment may lead to a "shift" toward "atavistic" biologic features, such as the switch from oxidative phosphorylation (OXPHOS) to lactic acid fermentation, which can also sustain drug resistance. Finally, we point out new integrative metabolism-based pharmacological approaches and potential biomarkers for early detection.
Collapse
Affiliation(s)
| | | | | | | | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy; (D.G.); (D.N.); (R.R.P.); (C.S.)
| |
Collapse
|
4
|
Jiang Y, He K. Nanobiotechnological approaches in osteosarcoma therapy: Versatile (nano)platforms for theranostic applications. ENVIRONMENTAL RESEARCH 2023; 229:115939. [PMID: 37088317 DOI: 10.1016/j.envres.2023.115939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Constructive achievements in the field of nanobiotechnology and their translation into clinical course have led to increasing attention towards evaluation of their use for treatment of diseases, especially cancer. Osteosarcoma (OS) is one of the primary bone malignancies that affects both males and females in childhood and adolescence. Like other types of cancers, genetic and epigenetic mutations account for OS progression and several conventional therapies including chemotherapy and surgery are employed. However, survival rate of OS patients remains low and new therapies in this field are limited. The purpose of the current review is to provide a summary of nanostructures used in OS treatment. Drug and gene delivery by nanoplatforms have resulted in an accumulation of therapeutic agents for tumor cell suppression. Furthermore, co-delivery of genes and drugs by nanostructures are utilized in OS suppression to boost immunotherapy. Since tumor cells have distinct features such as acidic pH, stimuli-responsive nanoparticles have been developed to appropriately target OS. Besides, nanoplatforms can be used for biosensing and providing phototherapy to suppress OS. Furthermore, surface modification of nanoparticles with ligands can increase their specificity and selectivity towards OS cells. Clinical translation of current findings suggests that nanoplatforms have been effective in retarding tumor growth and improving survival of OS patients.
Collapse
Affiliation(s)
- Yao Jiang
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| | - Ke He
- Minimally Invasive Tumor Therapies Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
5
|
Dang H, Yin D, Tian Y, Cheng Q, Teng C, Xu Y, Yan L. In situ formation of J-aggregate in the tumor microenvironment using acidity responsive polypeptide nanoparticle encapsulating galactose-conjugated BODIPY dye for NIR-II phototheranostics. J Mater Chem B 2022; 10:5279-5290. [PMID: 35770703 DOI: 10.1039/d2tb00705c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through the activation of packing arrangements of dyes to modulate their photophysical and/or photochemical properties, not only new NIR-II dyes but tumor-specific NIR-II imaging and therapy can also be achieved. Herein, we designed an acid-responsive polypeptide nanoparticle (P-ipr@Gal) encapsulated with a pH-sensitive amphiphilic polypeptide (P-ipr) as a carrier for the galactose-conjugated BODIPY (Gal-BDP) dye. When P-ipr@Gal NPs are enriched in tumor regions by the EPR effect, the acidic microenvironment (pH 6.4-6.8) promotes the disintegration of P-ipr@Gal nanomicelles and the release of sufficient Gal-BDP. The protonation of the julolidine nitrogen of the Gal-BDP dye switched on the molecular stacking transformation from the H-aggregate to J-aggregate. The J-aggregate significantly enhanced the redshift absorption and emission intensity, which enhanced the fluorescence brightness and photothermal therapeutic effect in the tumor region. We also prepared J-aggregates PAsp@Gal with non-acidic responsive polyaspartic acid benzyl esters (PAsp) encapsulated Gal-BDP, which remained "always-on" with J-aggregate characteristics. The P-ipr@Gal (or PAsp@Gal) J-aggregate has a maximum emission peak redshifted to nearly 1064 nm, with a 3.5-fold increase in the emission intensity compared to the H-aggregate at pH 7.4. Based on the effective accumulation of tumor sites and considerable PCE (>40%), P-ipr@Gal nanoparticles have a lower background and higher tumor background ratio, which makes them a potential NIR-II imaging-guided photothermal therapy agents.
Collapse
Affiliation(s)
- Huiping Dang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Youliang Tian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Quan Cheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Changchang Teng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Yixuan Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|