1
|
Augustine R, Gezek M, Nikolopoulos VK, Buck PL, Bostanci NS, Camci-Unal G. Stem Cells in Bone Tissue Engineering: Progress, Promises and Challenges. Stem Cell Rev Rep 2024; 20:1692-1731. [PMID: 39028416 DOI: 10.1007/s12015-024-10738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Bone defects from accidents, congenital conditions, and age-related diseases significantly impact quality of life. Recent advancements in bone tissue engineering (TE) involve biomaterial scaffolds, patient-derived cells, and bioactive agents, enabling functional bone regeneration. Stem cells, obtained from numerous sources including umbilical cord blood, adipose tissue, bone marrow, and dental pulp, hold immense potential in bone TE. Induced pluripotent stem cells and genetically modified stem cells can also be used. Proper manipulation of physical, chemical, and biological stimulation is crucial for their proliferation, maintenance, and differentiation. Stem cells contribute to osteogenesis, osteoinduction, angiogenesis, and mineralization, essential for bone regeneration. This review provides an overview of the latest developments in stem cell-based TE for repairing and regenerating defective bones.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Radiology, Stanford Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | | | - Paige Lauren Buck
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
2
|
Indrakumar S, Dash TK, Mishra V, Tandon B, Chatterjee K. Silk Fibroin and Its Nanocomposites for Wound Care: A Comprehensive Review. ACS POLYMERS AU 2024; 4:168-188. [PMID: 38882037 PMCID: PMC11177305 DOI: 10.1021/acspolymersau.3c00050] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 06/18/2024]
Abstract
For most individuals, wound healing is a highly organized, straightforward process, wherein the body transitions through different phases in a timely manner. However, there are instances where external intervention becomes necessary to support and facilitate different phases of the body's innate healing mechanism. Furthermore, in developing countries, the cost of the intervention significantly impacts access to treatment options as affordability becomes a determining factor. This is particularly true in cases of long-term wound treatment and management, such as chronic wounds and infections. Silk fibroin (SF) and its nanocomposites have emerged as promising biomaterials with potent wound-healing activity. Driven by this motivation, this Review presents a critical overview of the recent advancements in different aspects of wound care using SF and SF-based nanocomposites. In this context, we explore various formats of hemostats and assess their suitability for different bleeding situations. The subsequent sections discuss the primary causes of nonhealing wounds, i.e., prolonged inflammation and infections. Herein, different treatment strategies to achieve immunomodulatory and antibacterial properties in a wound dressing were reviewed. Despite exhibiting excellent pro-healing properties, few silk-based products reach the market. This Review concludes by highlighting the bottlenecks in translating silk-based products into the market and the prospects for the future.
Collapse
Affiliation(s)
- Sushma Indrakumar
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Tapan Kumar Dash
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore 560064, India
| | - Vivek Mishra
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore 560064, India
| | - Bharat Tandon
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore 560064, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Sun H, Shang Y, Guo J, Maihemuti A, Shen S, Shi Y, Liu H, Che J, Jiang Q. Artificial Periosteum with Oriented Surface Nanotopography and High Tissue Adherent Property. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45549-45560. [PMID: 37747777 DOI: 10.1021/acsami.3c07561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Massive periosteal defects often significantly impair bone regeneration and repair, which have become a major clinical challenge. Unfortunately, current engineered periosteal materials can hardly currently focus on achieving high tissue adhesion property, being suitable for cell growth, and inducing cell orientation concurrently to meet the properties of nature periosteum. Additionally, the preparation of oriented surface nanotopography often relies on professional equipment. In this study, inspired by the oriented collagen structure of nature periosteum, we present a composite artificial periosteum with a layer of oriented nanotopography surface containing carbon nanotubes (CNTs), cross-linked with adhesive polydopamine (PDA) hydrogel on both terminals. An oriented surface structure that can simulate the oriented alignment of periosteal collagen fibers can be quickly and conveniently obtained via a simple stretching of the membrane in a water bath. With the help of CNTs, our artificial periosteum exhibits sufficient mechanical strength and desired oriented nanotopological structure surface, which further induces the directional arrangement of human bone marrow mesenchymal stem cells (hBMSCs) on the membrane. These oriented hBMSCs express significantly higher levels of osteogenic genes and proteins, while the resultant composite periosteum can be stably immobilized in vivo in the rat model of massive calvarial defect through the PDA hydrogel, which finally shows promising bone regeneration ability. We anticipate that the developed functional artificial periosteum has great potential in biomedical applications for the treatment of composite defects of the bone and periosteum.
Collapse
Affiliation(s)
- Han Sun
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing 210008, Jiangsu, PR China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu, PR China
- Institute of Medicinal 3D Printing, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing 210093, Jiangsu, PR China
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou 213003, Jiangsu, PR China
| | - Yixuan Shang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Junxia Guo
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing 210008, Jiangsu, PR China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu, PR China
- Institute of Medicinal 3D Printing, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing 210093, Jiangsu, PR China
| | - Abudureheman Maihemuti
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing 210008, Jiangsu, PR China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu, PR China
- Institute of Medicinal 3D Printing, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing 210093, Jiangsu, PR China
| | - Siyu Shen
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing 210008, Jiangsu, PR China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu, PR China
- Institute of Medicinal 3D Printing, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing 210093, Jiangsu, PR China
| | - Yong Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing 210008, Jiangsu, PR China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu, PR China
- Institute of Medicinal 3D Printing, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing 210093, Jiangsu, PR China
| | - Hao Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing 210008, Jiangsu, PR China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu, PR China
- Institute of Medicinal 3D Printing, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing 210093, Jiangsu, PR China
| | - Junyi Che
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing 210008, Jiangsu, PR China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu, PR China
- Institute of Medicinal 3D Printing, Nanjing University, Nanjing 210093, Jiangsu, PR China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing 210093, Jiangsu, PR China
| |
Collapse
|
5
|
Toader AG, Vlasceanu GM, Serafim A, Banciu A, Ionita M. Double-Reinforced Fish Gelatin Composite Scaffolds for Osteochondral Substitutes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1815. [PMID: 36902932 PMCID: PMC10003955 DOI: 10.3390/ma16051815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Genipin crosslinked composite blends of fish gelatin/kappa-carrageenan (fG/κC) with different concentrations of graphene oxide (GO) for osteochondral substitutes were prepared by a simple solution-blending method. The resulting structures were examined by micro-computer tomography, swelling studies, enzymatic degradations, compressions tests, MTT, LDH, and LIVE/DEAD assays. The derived findings revealed that genipin crosslinked fG/κC blends reinforced with GO have a homogenous morphology with ideal pore dimensions of 200-500 µm for bones alternative. GO additivation with a concentration above 1.25% increased the blends' fluid absorption. The full degradation of the blends occurs in 10 days and the gel fraction stability increases with GO concentration. The blend compression modules decrease at first until fG/κC GO3, which has the least elastic behavior, then by raising the GO concentration the blends start to regain elasticity. The MC3T3-E1 cell viability reveals less viable cells with the increase of GO concentration. The LDH together with the LIVE/DEAD assays reports a high concentration of live and healthy cells in all types of composite blends and very few dead cells at the higher GO content.
Collapse
Affiliation(s)
- Alin Georgian Toader
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University POLITEHNICA of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
| | - George Mihail Vlasceanu
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University POLITEHNICA of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
| | - Andrada Serafim
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University POLITEHNICA of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
| | - Adela Banciu
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
| | - Mariana Ionita
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University POLITEHNICA of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
| |
Collapse
|
6
|
Nellinger S, Kluger PJ. How Mechanical and Physicochemical Material Characteristics Influence Adipose-Derived Stem Cell Fate. Int J Mol Sci 2023; 24:ijms24043551. [PMID: 36834966 PMCID: PMC9961531 DOI: 10.3390/ijms24043551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Adipose-derived stem cells (ASCs) are a subpopulation of mesenchymal stem cells. Compared to bone marrow-derived stem cells, they can be harvested with minimal invasiveness. ASCs can be easily expanded and were shown to be able to differentiate into several clinically relevant cell types. Therefore, this cell type represents a promising component in various tissue engineering and medical approaches (e.g., cell therapy). In vivo cells are surrounded by the extracellular matrix (ECM) that provides a wide range of tissue-specific physical and chemical cues, such as stiffness, topography, and chemical composition. Cells can sense the characteristics of their ECM and respond to them in a specific cellular behavior (e.g., proliferation or differentiation). Thus, in vitro biomaterial properties represent an important tool to control ASCs behavior. In this review, we give an overview of the current research in the mechanosensing of ASCs and current studies investigating the impact of material stiffens, topography, and chemical modification on ASC behavior. Additionally, we outline the use of natural ECM as a biomaterial and its interaction with ASCs regarding cellular behavior.
Collapse
Affiliation(s)
- Svenja Nellinger
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany
| | - Petra Juliane Kluger
- School of Life Sciences, Reutlingen University, 72762 Reutlingen, Germany
- Correspondence: ; Tel.: +49-07121-271-2061
| |
Collapse
|
7
|
Shabbirahmed AM, Sekar R, Gomez LA, Sekhar MR, Hiruthyaswamy SP, Basavegowda N, Somu P. Recent Developments of Silk-Based Scaffolds for Tissue Engineering and Regenerative Medicine Applications: A Special Focus on the Advancement of 3D Printing. Biomimetics (Basel) 2023; 8:16. [PMID: 36648802 PMCID: PMC9844467 DOI: 10.3390/biomimetics8010016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Regenerative medicine has received potential attention around the globe, with improving cell performances, one of the necessary ideas for the advancements of regenerative medicine. It is crucial to enhance cell performances in the physiological system for drug release studies because the variation in cell environments between in vitro and in vivo develops a loop in drug estimation. On the other hand, tissue engineering is a potential path to integrate cells with scaffold biomaterials and produce growth factors to regenerate organs. Scaffold biomaterials are a prototype for tissue production and perform vital functions in tissue engineering. Silk fibroin is a natural fibrous polymer with significant usage in regenerative medicine because of the growing interest in leftovers for silk biomaterials in tissue engineering. Among various natural biopolymer-based biomaterials, silk fibroin-based biomaterials have attracted significant attention due to their outstanding mechanical properties, biocompatibility, hemocompatibility, and biodegradability for regenerative medicine and scaffold applications. This review article focused on highlighting the recent advancements of 3D printing in silk fibroin scaffold technologies for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Asma Musfira Shabbirahmed
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, Tamil Nadu, India
| | - Rajkumar Sekar
- Department of Chemistry, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Chengalpattu 603308, Tamil Nadu, India
| | - Levin Anbu Gomez
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, Tamil Nadu, India
| | - Medidi Raja Sekhar
- Department of Chemistry, College of Natural Sciences, Kebri Dehar University, Korahe Zone, Somali Region, Kebri Dehar 3060, Ethiopia
| | | | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Prathap Somu
- Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Chennai 600124, Tamil Nadu, India
| |
Collapse
|
8
|
Wang L, Lian J, Xia Y, Guo Y, Xu C, Zhang Y, Xu J, Zhang X, Li B, Zhao B. A study on in vitro and in vivo bioactivity of silk fibroin / nano-hydroxyapatite / graphene oxide composite scaffolds with directional channels. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Monzón M, Donate R, Liu C, Tamaddon M, Oliveira JM. BAMOS project: osteochondral scaffold innovation applied to osteoarthritis. IN VITRO MODELS 2022; 1:209-211. [PMID: 39871865 PMCID: PMC11756446 DOI: 10.1007/s44164-022-00019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/29/2025]
Affiliation(s)
- Mario Monzón
- Departamento de Ingeniería Mecánica, Grupo de Investigación en Fabricación Integrada y Avanzada, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas, Spain
| | - Ricardo Donate
- Departamento de Ingeniería Mecánica, Grupo de Investigación en Fabricación Integrada y Avanzada, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas, Spain
| | - Chaozong Liu
- Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP UK
| | - Maryam Tamaddon
- Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP UK
| | - J. Miguel Oliveira
- 3B’s Research Group, I3B’s-Research Institute On Biomaterials, University of Minho, AvePark, Parque de Ciência e Tecnologia, 4805-017 Barco, Portugal
- ICVS/3B’s-PT Government Associated Laboratory, Braga, Portugal
| |
Collapse
|