1
|
Ouyang B, Wei D, Wu B, Yan L, Gang H, Cao Y, Chen P, Zhang T, Wang H. In the View of Electrons Transfer and Energy Conversion: The Antimicrobial Activity and Cytotoxicity of Metal-Based Nanomaterials and Their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303153. [PMID: 37721195 DOI: 10.1002/smll.202303153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/28/2023] [Indexed: 09/19/2023]
Abstract
The global pandemic and excessive use of antibiotics have raised concerns about environmental health, and efforts are being made to develop alternative bactericidal agents for disinfection. Metal-based nanomaterials and their derivatives have emerged as promising candidates for antibacterial agents due to their broad-spectrum antibacterial activity, environmental friendliness, and excellent biocompatibility. However, the reported antibacterial mechanisms of these materials are complex and lack a comprehensive understanding from a coherent perspective. To address this issue, a new perspective is proposed in this review to demonstrate the toxic mechanisms and antibacterial activities of metal-based nanomaterials in terms of energy conversion and electron transfer. First, the antimicrobial mechanisms of different metal-based nanomaterials are discussed, and advanced research progresses are summarized. Then, the biological intelligence applications of these materials, such as biomedical implants, stimuli-responsive electronic devices, and biological monitoring, are concluded based on trappable electrical signals from electron transfer. Finally, current improvement strategies, future challenges, and possible resolutions are outlined to provide new insights into understanding the antimicrobial behaviors of metal-based materials and offer valuable inspiration and instructional suggestions for building future intelligent environmental health.
Collapse
Affiliation(s)
- Baixue Ouyang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Dun Wei
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Bichao Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Lvji Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Gang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Yiyun Cao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Peng Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Tingzheng Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
- School of Metallurgy and Environment and Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South, University, Changsha, 410083, China
| |
Collapse
|
2
|
Zhou D, Zhang S, Khan AU, Chen L, Ge G. A wearable AuNP enhanced metal-organic gel (Au@MOG) sensor for sweat glucose detection with ultrahigh sensitivity. NANOSCALE 2023; 16:163-170. [PMID: 38073477 DOI: 10.1039/d3nr05179j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The demand for sensitive and non-invasive sensors for monitoring glucose levels in sweat has grown considerably in recent years. This study presents the development of a wearable sensor for sweat glucose detection with ultrahigh sensitivity. The sensor was fabricated by embedding Au nanoparticles (AuNPs) and metal-organic gels (MOGs) on nickel foam (NF). A non-enzymatic electrocatalytic glucose sensor has been developed to combine the three-dimensional network of MOGs with more active sites favourable for glucose diffusion and the transfer of electrons from glucose to the electrode. These results show that the sensor has an ultrahigh sensitivity of 13.94 mA mM-1 cm-2, a linear detection range between 2 and 600 μM, and a lower detection limit as low as 1 μM (signal/noise = 3) with comparable accuracy and reliability under non-alkaline conditions to those of high-pressure ion chromatography (HPIC). Furthermore, a wearable sweat glucose sensor has been constructed by sputtering an Au conductive layer on a flexible polydimethylsiloxane (PDMS) substrate and coating it with Au@MOGs. Our work demonstrates that the combination of Au NPs and MOGs can enhance the sensitivity and activity of these materials, making them useful for electrocatalytic glucose monitoring with ultrahigh sensitivity.
Collapse
Affiliation(s)
- Dengfeng Zhou
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 ZhongguancunBeiyitiao, Beijing 100190, PR China.
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuangbin Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 ZhongguancunBeiyitiao, Beijing 100190, PR China.
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Atta Ullah Khan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 ZhongguancunBeiyitiao, Beijing 100190, PR China.
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lan Chen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 ZhongguancunBeiyitiao, Beijing 100190, PR China.
| | - Guanglu Ge
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 ZhongguancunBeiyitiao, Beijing 100190, PR China.
| |
Collapse
|
3
|
Feng Y, Cheng Z, Larsen AKK, Shi H, Sun T, Zhang P, Dong M, Liu L. Amyloid-like nanofibrous network confined and aligned ultrafine bimetallic nanozymes for smart antibacterial therapy. Mater Today Bio 2023; 22:100730. [PMID: 37576869 PMCID: PMC10413149 DOI: 10.1016/j.mtbio.2023.100730] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Nanozyme-based antibacterial therapy (NABT) has emerged as a promising strategy to combat bacterial antimicrobial resistance. Engineering the noble metal nanozymes with strong bacterial capture and high catalytic activity for enhanced NABT is highly anticipated but still challenged. Herein, we developed hybrid nanozymes by engineering ultrafine bimetallic Au/Cu nanoparticles confined on the lysozyme amyloid-like nanofibrous networks (LNF). The introduction of copper in the nanozymes facilitates the H2O2 adsorption and reduces the energy barrier for activating the H2O2 decomposition to form •OH, meanwhile displaying the significantly enhanced POD-like activity under NIR irradiation. Taking advantage of the inherent supramolecular networks inspired from human defensin 6-trapping bacteria mechanism, the hybrid nanozymes effectively capture the bacteria and allow the catalytic attack around the bacterial surfaces to improve the antibacterial efficiency. Finally, the as-prepared nanozymes exhibit the preeminent bactericidal efficacy against bacteria, especially for drug-resistant bacteria both in vitro and in vivo, and the effect on wound healing.
Collapse
Affiliation(s)
- Yonghai Feng
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Zerui Cheng
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | | | - Hui Shi
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Tongtong Sun
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Peng Zhang
- Institute of Environmental Research at Greater Bay, Guangzhou University, 230 Waihuan West Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Universitas Arhusiensis, Arhus, 8200, Denmark
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| |
Collapse
|
4
|
Xu G, Du X, Wang W, Qu Y, Liu X, Zhao M, Li W, Li YQ. Plasmonic Nanozymes: Leveraging Localized Surface Plasmon Resonance to Boost the Enzyme-Mimicking Activity of Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204131. [PMID: 36161698 DOI: 10.1002/smll.202204131] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Nanozymes, a type of nanomaterials that function similarly to natural enzymes, receive extensive attention in biomedical fields. However, the widespread applications of nanozymes are greatly plagued by their unsatisfactory enzyme-mimicking activity. Localized surface plasmon resonance (LSPR), a nanoscale physical phenomenon described as the collective oscillation of surface free electrons in plasmonic nanoparticles under light irradiation, offers a robust universal paradigm to boost the catalytic performance of nanozymes. Plasmonic nanozymes (PNzymes) with elevated enzyme-mimicking activity by leveraging LSPR, emerge and provide unprecedented opportunities for biocatalysis. In this review, the physical mechanisms behind PNzymes are thoroughly revealed including near-field enhancement, hot carriers, and the photothermal effect. The rational design and applications of PNzymes in biosensing, cancer therapy, and bacterial infections elimination are systematically introduced. Current challenges and further perspectives of PNzymes are also summarized and discussed to stimulate their clinical translation. It is hoped that this review can attract more researchers to further advance the promising field of PNzymes and open up a new avenue for optimizing the enzyme-mimicking activity of nanozymes to create superior nanocatalysts for biomedical applications.
Collapse
Affiliation(s)
- Guopeng Xu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Xuancheng Du
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Weijie Wang
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Yuanyuan Qu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Xiangdong Liu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Mingwen Zhao
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Weifeng Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Yong-Qiang Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
- Suzhou Research Institute, Shandong University, Suzhou, 215123, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
5
|
Shang H, Zhang H, Zhao R, Yu M, Ma Y, Sun Z, Wu X, Xu Y. Selenium nanoparticles are effective in penetrating pine and causing high oxidative damage to Bursaphelenchus xylophilus in pine wilt disease control. PEST MANAGEMENT SCIENCE 2022; 78:3704-3716. [PMID: 35643940 DOI: 10.1002/ps.7013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/20/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Research on selenium nanoparticles (SeNPs) in chemical defense and chemotherapy of plants has developed rapidly owing to their high microbial toxicity, environmental safety, and degradability. Pine wilt disease (PWD) threatens pine forests worldwide; however, it is difficult to kill the nematodes (Bursaphelenchus xylophilus) inside the tree that cause PWD using traditional pesticide formulations. SeNPs could be the key to controlling PWD. RESULTS In this study, approximately 50 nm SeNPs were prepared using a simple and green method, and chitosan was used to increase their biocompatibility and stability. The preparation and characterization results showed that the prepared SeNPs coated with chitosan (SeNPs@CS) were spherical and evenly dispersed. The bioassay results showed that SeNPs@CS had an LC50 of 15.627 mg L-1 against B. xylophilus. In addition, the killing mechanism of SeNPs@CS against B. xylophilus was studied. Confocal microscopy and transmission electron microscopy demonstrated that B. xylophilus were killed by reactive oxygen species, and the penetration of nano-form materials to B. xylophilus was higher than that of non-nano-form materials. To verify the effective penetration of SeNPs in pine tissues, Cy5-labeled SeNPs@CS was observed inside pine needles and branches using frozen sections and confocal microscopy. In addition, the cytotoxicity of SeO2 and SeNPs@CS was tested, and the results showed that the cytotoxicity of SeNPs@CS to MC3T3-E1 cells was reduced. CONCLUSION These results show that SeNPs are expected to be used as a new strategy for the control of PWD with oxidative damage and high penetration to B. xylophilus and effective target penetration and biosafety. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongyi Shang
- College of Science, China Agricultural University, Beijing, China
| | - Hongyan Zhang
- College of Science, China Agricultural University, Beijing, China
| | - Rui Zhao
- College of Science, China Agricultural University, Beijing, China
| | - Meng Yu
- College of Science, China Agricultural University, Beijing, China
| | - Yingjian Ma
- College of Science, China Agricultural University, Beijing, China
| | - Zhe Sun
- College of Science, China Agricultural University, Beijing, China
| | - Xuemin Wu
- College of Science, China Agricultural University, Beijing, China
| | - Yong Xu
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Zhao X, He X, Hou A, Cheng C, Wang X, Yue Y, Wu Z, Wu H, Liu B, Li H, Shen J, Tan C, Zhou Z, Ma L. Growth of Cu 2O Nanoparticles on Two-Dimensional Zr-Ferrocene-Metal-Organic Framework Nanosheets for Photothermally Enhanced Chemodynamic Antibacterial Therapy. Inorg Chem 2022; 61:9328-9338. [PMID: 35666261 DOI: 10.1021/acs.inorgchem.2c01091] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two-dimensional (2D) metal-organic framework (MOF) nanosheets have been demonstrated to be promising templates for the growth of various kinds of nanomaterials on their surfaces to construct novel 2D composites, thus realizing enhanced performance in various applications. Herein, we report the growth of Cu2O nanoparticles on 2D Zr-ferrocene (Zr-Fc)-MOF (Zr-Fc-MOF) nanosheets to prepare 2D composites for near-infrared (NIR) photothermally enhanced chemodynamic antibacterial therapy. The uniform Zr-Fc-MOF nanosheets are synthesized using the solvothermal method, followed by ultrasound sonication, and Cu2O nanoparticles are then deposited on its surface to obtain the Cu2O-decorated Zr-Fc-MOF (denoted as Cu2O/Zr-Fc-MOF) 2D composite. Promisingly, the Cu2O/Zr-Fc-MOF composite shows higher chemodynamic activity for producing ·OH via Fenton-like reaction than that of the pristine Zr-Fc-MOF nanosheets. More importantly, the chemodynamic activity of the Cu2O/Zr-Fc-MOF composite can be further enhanced by the photothermal effect though NIR laser (808 nm) irradiation. Thus, the Cu2O/Zr-Fc-MOF composite can be used as an efficient nanoagent for photothermally enhanced chemodynamic antibacterial therapy.
Collapse
Affiliation(s)
- Xinshuo Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China.,College of Chemistry and Chemical Engineering, Henan Polytechnic University Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Aidi Hou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China.,College of Chemistry and Chemical Engineering, Henan Polytechnic University Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Chunhua Cheng
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Xingnan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Yuanjing Yue
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Zhikang Wu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Hai Li
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, PR China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China.,College of Chemistry and Chemical Engineering, Henan Polytechnic University Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| |
Collapse
|