1
|
Ren Y, Song Y, Li M, He L, Xiao C, Yang P, Zhang Y, Zhao C, Wang T, Zhou G, Lei B. An object detection-based model for automated screening of stem-cells senescence during drug screening. Neural Netw 2025; 183:106940. [PMID: 39631255 DOI: 10.1016/j.neunet.2024.106940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/24/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024]
Abstract
Deep learning-based cell senescence detection is crucial for accurate quantitative analysis of senescence assessment. However, senescent cells are small in size and have little differences in appearance and shape in different states, which leads to insensitivity problems such as missed and false detection. In addition, complex intelligent models are not conducive to clinical application. Therefore, to solve the above problems, we proposed a Faster Region Convolutional Neural Network (Faster R-CNN) detection model with Swin Transformer (Swin-T) and group normalization (GN), called STGF R-CNN, for the detection of different senescent cells to achieve quantification assessment of induced pluripotent stem cell-derived mesenchymal stem cells (iP-MSCs) senescence. Specifically, to enhance the representation learning ability of the network, Swin-T with a hierarchical structure was constructed. It utilizes a local window attention mechanism to capture features of different scales and levels. In addition, the GN strategy is adopted to achieve a lightweight model. To verify the effectiveness of the STGF R-CNN, a cell senescence dataset, the iP-MSCs dataset, was constructed, and a series of experiments were conducted. Experiment results show that it has the advantage of high senescent detection accuracy, mean Average Precision (mAP) is 0.835, Params is 46.06M, and FLOPs is 95.62G, which significantly reduces senescent assessment time from 12 h to less than 1 s. The STGF R-CNN has advantages over existing cell senescence detection methods, providing potential for anti-senescent drug screening. Our code is available at https://github.com/RY-97/STGF-R-CNN.
Collapse
Affiliation(s)
- Yu Ren
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Youyi Song
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Mingzhu Li
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Liangge He
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-senescent and Regenerative Medicine, Shenzhen University, Shenzhen 518060, China
| | - Chunlun Xiao
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Peng Yang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yongtao Zhang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Cheng Zhao
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Tianfu Wang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-senescent and Regenerative Medicine, Shenzhen University, Shenzhen 518060, China
| | - Baiying Lei
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Lin Y, Chen Q, Chen T. Recent advancements in machine learning for bone marrow cell morphology analysis. Front Med (Lausanne) 2024; 11:1402768. [PMID: 38947236 PMCID: PMC11211563 DOI: 10.3389/fmed.2024.1402768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
As machine learning progresses, techniques such as neural networks, decision trees, and support vector machines are being increasingly applied in the medical domain, especially for tasks involving large datasets, such as cell detection, recognition, classification, and visualization. Within the domain of bone marrow cell morphology analysis, deep learning offers substantial benefits due to its robustness, ability for automatic feature learning, and strong image characterization capabilities. Deep neural networks are a machine learning paradigm specifically tailored for image processing applications. Artificial intelligence serves as a potent tool in supporting the diagnostic process of clinical bone marrow cell morphology. Despite the potential of artificial intelligence to augment clinical diagnostics in this domain, manual analysis of bone marrow cell morphology remains the gold standard and an indispensable tool for identifying, diagnosing, and assessing the efficacy of hematologic disorders. However, the traditional manual approach is not without limitations and shortcomings, necessitating, the exploration of automated solutions for examining and analyzing bone marrow cytomorphology. This review provides a multidimensional account of six bone marrow cell morphology processes: automated bone marrow cell morphology detection, automated bone marrow cell morphology segmentation, automated bone marrow cell morphology identification, automated bone marrow cell morphology classification, automated bone marrow cell morphology enumeration, and automated bone marrow cell morphology diagnosis. Highlighting the attractiveness and potential of machine learning systems based on bone marrow cell morphology, the review synthesizes current research and recent advances in the application of machine learning in this field. The objective of this review is to offer recommendations to hematologists for selecting the most suitable machine learning algorithms to automate bone marrow cell morphology examinations, enabling swift and precise analysis of bone marrow cytopathic trends for early disease identification and diagnosis. Furthermore, the review endeavors to delineate potential future research avenues for machine learning-based applications in bone marrow cell morphology analysis.
Collapse
Affiliation(s)
- Yifei Lin
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Qingquan Chen
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- The School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Tebin Chen
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
3
|
Wan Z, Li M, Wang Z, Tan H, Li W, Yu L, Samuel DJ. CellT-Net: A Composite Transformer Method for 2-D Cell Instance Segmentation. IEEE J Biomed Health Inform 2024; 28:730-741. [PMID: 37023158 DOI: 10.1109/jbhi.2023.3265006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Cell instance segmentation (CIS) via light microscopy and artificial intelligence (AI) is essential to cell and gene therapy-based health care management, which offers the hope of revolutionary health care. An effective CIS method can help clinicians to diagnose neurological disorders and quantify how well these deadly disorders respond to treatment. To address the CIS task challenged by dataset characteristics such as irregular morphology, variation in sizes, cell adhesion, and obscure contours, we propose a novel deep learning model named CellT-Net to actualize effective cell instance segmentation. In particular, the Swin transformer (Swin-T) is used as the basic model to construct the CellT-Net backbone, as the self-attention mechanism can adaptively focus on useful image regions while suppressing irrelevant background information. Moreover, CellT-Net incorporating Swin-T constructs a hierarchical representation and generates multi-scale feature maps that are suitable for detecting and segmenting cells at different scales. A novel composite style named cross-level composition (CLC) is proposed to build composite connections between identical Swin-T models in the CellT-Net backbone and generate more representational features. The earth mover's distance (EMD) loss and binary cross entropy loss are used to train CellT-Net and actualize the precise segmentation of overlapped cells. The LiveCELL and Sartorius datasets are utilized to validate the model effectiveness, and the results demonstrate that CellT-Net can achieve better model performance for dealing with the challenges arising from the characteristics of cell datasets than state-of-the-art models.
Collapse
|
4
|
Yang Y, He H, Wang J, Chen L, Xu Y, Ge C, Li S. Blood quality evaluation via on-chip classification of cell morphology using a deep learning algorithm. LAB ON A CHIP 2023; 23:2113-2121. [PMID: 36946151 DOI: 10.1039/d2lc01078j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The quality of red blood cells (RBCs) in stored blood has a direct impact on the recovery of patients treated by blood transfusion, which directly reflects the quality of blood. The traditional means for blood quality evaluation involve the use of reagents and multi-step and time-consuming operations. Here, a low-cost, multi-classification, label-free and high-precision method is developed, which combines microfluidic technology and a deep learning algorithm together to recognize and classify RBCs based on morphology. The microfluidic channel is designed to effectively and controllably solve the problem of cell overlap, which has a severe negative impact on the identification of cells. The object detection model in the deep learning algorithm is optimized and used to recognize multiple RBCs simultaneously in the whole field of view, so as to classify them into six morphological subcategories and count the numbers in each subgroup. The mean average precision of the developed object detection model reaches 89.24%. The blood quality can be evaluated by calculating the morphology index (MI) according to the numbers of cells in subgroups. The validation of the method is verified by evaluating three blood samples stored for 7 days, 21 days and 42 days, which have MIs of 84.53%, 73.33% and 24.34%, respectively, indicating good agreement with the actual blood quality. This method has the merits of cell identification in a wide channel, no need for single cell alignment as the image cytometry does and it is not only applicable to the quality evaluation of RBCs, but can also be used for general cell identifications with different morphologies.
Collapse
Affiliation(s)
- Yuping Yang
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
- Chongqing College of Electronic Engineering, Chongqing 401331, China
| | - Hong He
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Junju Wang
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Li Chen
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Yi Xu
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Chuang Ge
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Shunbo Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|