1
|
Koç İ, Onbasli K, Kurt C, Atac N, Cooper FK, Çam K, Cakir E, Yagan R, Can F, Sennaroglu A, Onbasli MC, Yagci Acar H. Rational control of combined photothermal and photodynamic therapy for effective eradication of biofilms. NANOSCALE 2025. [PMID: 40434218 PMCID: PMC12118452 DOI: 10.1039/d4nr03798g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 04/30/2025] [Indexed: 05/29/2025]
Abstract
New therapies are essential for eliminating antibiotic-resistant bacteria and their biofilms, which are a major global health threat, causing millions of deaths annually. Here, we demonstrate a combination of photodynamic therapy (PDT) and photothermal therapy (PTT) for the inhibition of biofilms of Pseudomonas aeruginosa and Staphylococcus epidermidis using aminolevulinic acid (ALA)-loaded polyacrylic acid-coated superparamagnetic iron oxide nanoparticles (PAA-SPIONs) at 200, 600 and 1000 μg mL-1 Fe concentrations under 640 nm (0.75 W cm-2), 808 nm (2.6 W cm-2) and 640 + 808 nm (0.75 + 2.6 W cm-2, 20 min) irradiation. PTT experiments indicate ALA/PAA-SPION concentration-dependent heating up to 10.2 °C for PAA-SPIONs and 9.3 °C for ALA/PAA-SPIONs under combined 640 + 808 nm laser excitation. Bacterial growth inhibition by ALA/PAA-SPIONs was investigated with and without laser irradiation for 10 min using 150 and 600 μg Fe per mL or 0.5 mM and 2 mM ALA on both bacterial types. These experiments indicate a 3 to 6-log reduction in P. aeruginosa compared to control samples (without nanoparticles or a laser) with increasing Fe and ALA concentrations. Growth was completely inhibited by ALA/PAA-SPIONs under 640 + 808 nm irradiation. ALA/PAA-SPIONs caused growth inhibition of S. epidermidis between 2-log and 4-log with increasing wavelengths, Fe and ALA doses. PAA-SPIONs and a laser together inhibited the biofilms of P. aeruginosa with 3 to 11-log reductions with increasing laser wavelengths. The reduction of the biofilm with ALA/PAA-SPIONs and a laser reaches 8-log for 640 nm and 13-log for 808 nm excitation. We accurately model the wavelength, time, and nanoparticle concentration dependence of PTT for the first time. These results pave the way for effective PDT/PTT elimination of biofilms of P. aeruginosa and S. epidermidis.
Collapse
Affiliation(s)
- İrem Koç
- Koç University, Graduate School of Sciences and Engineering, Materials Science and Engineering, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Türkiye.
| | - Kubra Onbasli
- Istanbul Technical University, Faculty of Chemical and Metallurgical Engineering, Metallurgical and Materials Engineering Department, 34469 Maslak, Istanbul, Türkiye
| | - Cem Kurt
- Koç University Department of Electrical-Electronics Engineering, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Türkiye
| | - Nazli Atac
- School of Medicine, Medical Microbiology, Koç University, Istanbul, Türkiye
- Koç University-İşbank Center for Infectious Diseases (KUISCID), Istanbul, Türkiye
| | - Francis K Cooper
- School of Medicine, Medical Microbiology, Koç University, Istanbul, Türkiye
- Koç University-İşbank Center for Infectious Diseases (KUISCID), Istanbul, Türkiye
| | - Kübra Çam
- School of Medicine, Medical Microbiology, Koç University, Istanbul, Türkiye
- Koç University-İşbank Center for Infectious Diseases (KUISCID), Istanbul, Türkiye
| | - Ece Cakir
- Koç University, Graduate School of Sciences and Engineering, Materials Science and Engineering, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Türkiye.
| | - Rawana Yagan
- Koç University Department of Electrical-Electronics Engineering, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Türkiye
| | - Fusun Can
- School of Medicine, Medical Microbiology, Koç University, Istanbul, Türkiye
- Koç University-İşbank Center for Infectious Diseases (KUISCID), Istanbul, Türkiye
| | - Alphan Sennaroglu
- Koç University, Graduate School of Sciences and Engineering, Materials Science and Engineering, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Türkiye.
- Koç University Department of Electrical-Electronics Engineering, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Türkiye
- Koc University, Department of Physics, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Türkiye
- Koç University, Surface Science and Technology Center (KUYTAM), Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Türkiye
| | - Mehmet C Onbasli
- Koç University, Graduate School of Sciences and Engineering, Materials Science and Engineering, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Türkiye.
- Koç University Department of Electrical-Electronics Engineering, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Türkiye
- Koç University-İşbank Center for Infectious Diseases (KUISCID), Istanbul, Türkiye
- Koc University, Department of Physics, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Türkiye
- Koç University, Surface Science and Technology Center (KUYTAM), Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Türkiye
| | - Havva Yagci Acar
- Koç University, Graduate School of Sciences and Engineering, Materials Science and Engineering, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Türkiye.
- Koç University, Surface Science and Technology Center (KUYTAM), Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Türkiye
- Koç University, Department of Chemistry, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Türkiye
| |
Collapse
|
2
|
Saadh MJ, Khidr WA, Alfarttoosi KH, Bishoyi AK, Ganesan S, Shankhyan A, Gayathri S, Rizaev J, Taher WM, Alwan M, Jawad MJ, Al-Nuaimi AMA. Metal nanoparticles as a promising therapeutic approach for prostate cancer diagnosis and therapy: a comprehensive review. Med Oncol 2025; 42:83. [PMID: 39987535 DOI: 10.1007/s12032-025-02633-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025]
Abstract
Prostate cancer is a leading cause of mortality among men worldwide, particularly in the USA and European nations, with an estimated 1.9 million new cases and over 580,000 deaths annually, according to recent global statistics. The treatment of prostate tumors presents significant clinical challenges, due to the disease's high metastatic potential, specifically to vital organs, such as the liver, lungs, bones, and brain. The intrinsic heterogeneity of prostate cancer cells, characterized by diverse genetic, molecular, and phenotypic profiles, complicates conventional therapeutic strategies, highlighting the need for advanced diagnostic and treatment modalities. Nanoparticles play a critical role in oncology field due to their unique physicochemical properties, including high surface area-to-volume ratio and the ability to be functionalized with targeting ligands. Metallic-based nanoparticles exhibits significant potential for applications in field of nanomedicine, drug delivery systems, gene silencing methods, radiotherapy enhancement, cancer diagnostics, and targeted therapeutic interventions. Metal nanoparticles have substantially improved the sensitivity and specificity of major imaging modalities and have demonstrated remarkable efficacy as biosensors for the detection of prostate cancer-specific biomarkers. This review article provides an in-depth analysis of the utilization of metal nanomaterials in prostate cancer, focusing on their roles in enhancing therapeutic efficacy, advancing diagnostic precision, and supporting the development of novel treatment strategies.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Wajida Ataallah Khidr
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq.
| | | | - Ashok Kumar Bishoyi
- Department of Microbiology, Marwadi University Research Center, Faculty of Science, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Aman Shankhyan
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - S Gayathri
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Jasur Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
3
|
Dong Z, Xue K, Verma A, Shi J, Wei Z, Xia X, Wang K, Zhang X. Photothermal therapy: a novel potential treatment for prostate cancer. Biomater Sci 2024; 12:2480-2503. [PMID: 38592730 DOI: 10.1039/d4bm00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related death in men, and most PCa patients treated with androgen deprivation therapy will progress to metastatic castration-resistant prostate cancer (mCRPC) due to the lack of efficient treatment. Recently, lots of research indicated that photothermal therapy (PTT) was a promising alternative that provided an accurate and efficient prostate cancer therapy. A photothermic agent (PTA) is a basic component of PPT and is divided into organic and inorganic PTAs. Besides, the combination of PTT and other therapies, such as photodynamic therapy (PDT), immunotherapy (IT), chemotherapy (CT), etc., provides an more efficient strategy for PCa therapy. Here, we introduce basic information about PTT and summarize the PTT treatment strategies for prostate cancer. Based on recent works, we think the combination of PPT and other therapies provides a novel possibility for PCa, especially CRPC clinical treatment.
Collapse
Affiliation(s)
- Zirui Dong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kaming Xue
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anushikha Verma
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhihao Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan 430022, Hubei, China.
| | - Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Hu R, Lan J, Zhang D, Shen W. Nanotherapeutics for prostate cancer treatment: A comprehensive review. Biomaterials 2024; 305:122469. [PMID: 38244344 DOI: 10.1016/j.biomaterials.2024.122469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Prostate cancer (PCa) is the most prevalent solid organ malignancy and seriously affects male health. The adverse effects of prostate cancer therapeutics can cause secondary damage to patients. Nanotherapeutics, which have special targeting abilities and controlled therapeutic release profiles, may serve as alternative agents for PCa treatment. At present, many nanotherapeutics have been developed to treat PCa and have shown better treatment effects in animals than traditional therapeutics. Although PCa nanotherapeutics are highly attractive, few successful cases have been reported in clinical practice. To help researchers design valuable nanotherapeutics for PCa treatment and avoid useless efforts, herein, we first reviewed the strategies and challenges involved in prostate cancer treatment. Subsequently, we presented a comprehensive review of nanotherapeutics for PCa treatment, including their targeting methods, controlled release strategies, therapeutic approaches and mechanisms. Finally, we proposed the future prospects of nanotherapeutics for PCa treatment.
Collapse
Affiliation(s)
- Ruimin Hu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin Lan
- Department of Ultrasound, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Dinglin Zhang
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
5
|
Fathi-Karkan S, Arshad R, Rahdar A, Ramezani A, Behzadmehr R, Ghotekar S, Pandey S. Recent advancements in the targeted delivery of etoposide nanomedicine for cancer therapy: A comprehensive review. Eur J Med Chem 2023; 259:115676. [PMID: 37499287 DOI: 10.1016/j.ejmech.2023.115676] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Etoposide (ETO), a popular anticancer drug that inhibits topoisomerase II enzymes, may be administered more effectively and efficiently due to nanomedicine. The therapeutic application of ETO is constrained by its limited solubility, weak absorption, and severe side effects. This article summarizes substantial progress made in the development of ETO nanomedicine for the treatment of cancer. It discusses various organic and inorganic nanostructures used to load or affix ETOs, such as lipids, liposomes, polymeric nanoparticles (NPs), dendrimers, micelles, gold NPs, iron oxide NPs, and silica NPs. In addition, it evaluates the structural properties of these nanostructures, such as their size, zeta potential, encapsulation efficiency, and drug release mechanism, as well as their in vitro or in vivo performance. The article also emphasizes the co-delivery of ETO with other medications or agents to produce synergistic effects or combat drug resistance in the treatment of cancer. It concludes with a discussion of the challenges and potential avenues for clinical translation of ETO nanomedicine.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran.
| | - Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, 98613-35856, Iran.
| | - Aghdas Ramezani
- Faculty of Medical Science, Tarbiat Modares, University, Tehran, Iran
| | - Razieh Behzadmehr
- Department of Radiology, Zabol University of Medical Sciences, Zabol, Iran
| | - Suresh Ghotekar
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, South Korea.
| |
Collapse
|
6
|
Cardoso BD, Fernandes DEM, Amorim CO, Amaral VS, Coutinho PJG, Rodrigues ARO, Castanheira EMS. Magnetoliposomes with Calcium-Doped Magnesium Ferrites Anchored in the Lipid Surface for Enhanced DOX Release. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2597. [PMID: 37764626 PMCID: PMC10535675 DOI: 10.3390/nano13182597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Nanotechnology has provided a new insight into cancer treatment by enabling the development of nanocarriers for the encapsulation, transport, and controlled release of antitumor drugs at the target site. Among these nanocarriers, magnetic nanosystems have gained prominence. This work presents the design, development, and characterization of magnetoliposomes (MLs), wherein superparamagnetic nanoparticles are coupled to the lipid surface. For this purpose, dimercaptosuccinic acid (DMSA)-functionalized Ca0.25Mg0.75Fe2O4 superparamagnetic nanoparticles were prepared for the first time. The magnetic nanoparticles demonstrated a cubic shape with an average size of 13.36 nm. Furthermore, their potential for photothermal hyperthermia was evaluated using 4 mg/mL, 2 mg/mL, and 1 mg/mL concentrations of NPs@DMSA, which demonstrated a maximum temperature variation of 20.4 °C, 11.4 °C, and 7.3 °C, respectively, during a 30 min NIR-laser irradiation. Subsequently, these nanoparticles were coupled to the lipid surface of DPPC/DSPC/CHEMS and DPPC/DSPC/CHEMS/DSPE-PEG-based MLs using a new synthesis methodology, exhibiting average sizes of 153 ± 8 nm and 136 ± 2 nm, respectively. Doxorubicin (DOX) was encapsulated with high efficiency, achieving 96% ± 2% encapsulation in non-PEGylated MLs and 98.0% ± 0.6% in stealth MLs. Finally, drug release assays of the DOX-loaded DPPC/DSPC/CHEMS MLs were performed under different conditions of temperature (37 °C and 42 °C) and pH (5.5 and 7.4), simulating physiological and therapeutic conditions. The results revealed a higher release rate at 42 °C and acidic pH. Release rates significantly increased when introducing the stimulus of laser-induced photothermal hyperthermia at 808 nm (1 W/cm2) for 5 min. After 48 h of testing, at pH 5.5, 67.5% ± 0.5% of DOX was released, while at pH 7.4, only a modest release of 27.0% ± 0.1% was achieved. The results demonstrate the potential of the MLs developed in this work to the controlled release of DOX under NIR-laser stimulation and acidic environments and to maintain a sustained and reduced release profile in physiological environments with pH 7.4.
Collapse
Affiliation(s)
- Beatriz D. Cardoso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, 4710-057 Braga, Portugal (D.E.M.F.)
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
- CMEMS—UMinho, Universidade do Minho, DEI, 4800-058 Guimarães, Portugal
- LABBELS—Associate Laboratory, 4800-058 Guimarães, Portugal
| | - Diana E. M. Fernandes
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, 4710-057 Braga, Portugal (D.E.M.F.)
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| | - Carlos O. Amorim
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Vítor S. Amaral
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Paulo J. G. Coutinho
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, 4710-057 Braga, Portugal (D.E.M.F.)
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| | - Ana Rita O. Rodrigues
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, 4710-057 Braga, Portugal (D.E.M.F.)
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, 4710-057 Braga, Portugal (D.E.M.F.)
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
7
|
Dutta SD, Ganguly K, Hexiu J, Randhawa A, Moniruzzaman M, Lim KT. A 3D Bioprinted Nanoengineered Hydrogel with Photoactivated Drug Delivery for Tumor Apoptosis and Simultaneous Bone Regeneration via Macrophage Immunomodulation. Macromol Biosci 2023; 23:e2300096. [PMID: 37087681 DOI: 10.1002/mabi.202300096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Indexed: 04/24/2023]
Abstract
One of the significant challenges in bone tissue engineering (BTE) is the healing of traumatic tissue defects owing to the recruitment of local infection and delayed angiogenesis. Herein, a 3D printable multi-functional hydrogel composing polyphenolic carbon quantum dots (CQDs, 100 µg mL-1 ) and gelatin methacryloyl (GelMA, 12 wt%) is reported for robust angiogenesis, bone regeneration and anti-tumor therapy. The CQDs are synthesized from a plant-inspired bioactive molecule, 1, 3, 5-trihydroxybenzene. The 3D printed GelMA-CQDs hydrogels display typical shear-thinning behavior with excellent printability. The fabricated hydrogel displayed M2 polarization of macrophage (Raw 264.7) cells via enhancing anti-inflammatory genes (e.g., IL-4 and IL10), and induced angiogenesis and osteogenesis of human bone mesenchymal stem cells (hBMSCs). The bioprinted hBMSCs are able to produce vessel-like structures after 14 d of incubation. Furthermore, the 3D printed hydrogel scaffolds also show remarkable near infra-red (NIR) responsive properties under 808 nm NIR light (1.0 W cm-2 ) irradiation with controlled release of antitumor drugs (≈49%) at pH 6.5, and thereby killing the osteosarcoma cells. Therefore, it is anticipated that the tissue regeneration and healing ability with therapeutic potential of the GelMA-CQDs scaffolds may provide a promising alternative for traumatic tissue regeneration via augmenting angiogenesis and accelerated immunomodulation.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jin Hexiu
- Department of Oral and Maxillofacial Surgery, Capital Medical University, Beijing, China
| | - Aayushi Randhawa
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 100069, Republic of Korea
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 1342, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 100069, Republic of Korea
| |
Collapse
|
8
|
Onbasli K, Demirci G, Isik F, Durmusoglu EG, Demir HV, Acar HY. Aqueous colloidal nanoplatelets for imaging and improved ALA-based photodynamic therapy of prostate cancer cells. Chem Commun (Camb) 2023; 59:10512-10515. [PMID: 37555511 DOI: 10.1039/d3cc02929h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Fluorescent, CdSe/CdS core/crown heterostructured nanoplatelets (NPLs) were transferred to the water via a simple, single-step ligand exchange using 2-mercaptopropionic acid in a simple extraction process. These stable, aqueous NPLs were loaded with a modal drug, 5-aminolevulinic acid (ALA). ALA-loaded NPLs emerged as a new class of theranostic nanoparticles for image-guided enhanced photodynamic therapy of both androgen-dependent and -independent human prostate cancer cells.
Collapse
Affiliation(s)
- Kubra Onbasli
- Department of Chemistry, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey.
| | - Gozde Demirci
- Department of Chemistry, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey.
| | - Furkan Isik
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey.
| | - Emek Goksu Durmusoglu
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey.
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Havva Yagci Acar
- Department of Chemistry, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey.
- Graduate School of Materials Science and Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey
- KUYTAM, Koc University Surface Science and Technology Center, 34450 Istanbul, Turkey
| |
Collapse
|
9
|
He X, Zhang S, Tian Y, Cheng W, Jing H. Research Progress of Nanomedicine-Based Mild Photothermal Therapy in Tumor. Int J Nanomedicine 2023; 18:1433-1468. [PMID: 36992822 PMCID: PMC10042261 DOI: 10.2147/ijn.s405020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
With the booming development of nanomedicine, mild photothermal therapy (mPTT, 42-45°C) has exhibited promising potential in tumor therapy. Compared with traditional PTT (>50°C), mPTT has less side effects and better biological effects conducive to tumor treatment, such as loosening the dense structure in tumor tissues, enhancing blood perfusion, and improving the immunosuppressive microenvironment. However, such a relatively low temperature cannot allow mPTT to completely eradicate tumors, and therefore, substantial efforts have been conducted to optimize the application of mPTT in tumor therapy. This review extensively summarizes the latest advances of mPTT, including two sections: (1) taking mPTT as a leading role to maximize its effect by blocking the cell defense mechanisms, and (2) regarding mPTT as a supporting role to assist other therapies to achieve synergistic antitumor curative effect. Meanwhile, the special characteristics and imaging capabilities of nanoplatforms applied in various therapies are discussed. At last, this paper puts forward the bottlenecks and challenges in the current research path of mPTT, and possible solutions and research directions in future are proposed correspondingly.
Collapse
Affiliation(s)
- Xiang He
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Shentao Zhang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
- Correspondence: Hui Jing; Wen Cheng, Department of Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, People’s Republic of China, Tel +86 13304504935; +86 13313677182, Email ;
| |
Collapse
|
10
|
Parodi A, Kolesova EP, Voronina MV, Frolova AS, Kostyushev D, Trushina DB, Akasov R, Pallaeva T, Zamyatnin AA. Anticancer Nanotherapeutics in Clinical Trials: The Work behind Clinical Translation of Nanomedicine. Int J Mol Sci 2022; 23:13368. [PMID: 36362156 PMCID: PMC9656556 DOI: 10.3390/ijms232113368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 10/04/2023] Open
Abstract
The ultimate goal of nanomedicine has always been the generation of translational technologies that can ameliorate current therapies. Cancer disease represented the primary target of nanotechnology applied to medicine, since its clinical management is characterized by very toxic therapeutics. In this effort, nanomedicine showed the potential to improve the targeting of different drugs by improving their pharmacokinetics properties and to provide the means to generate new concept of treatments based on physical treatments and biologics. In this review, we considered different platforms that reached the clinical trial investigation, providing an objective analysis about their physical and chemical properties and the working mechanism at the basis of their tumoritr opic properties. With this review, we aim to help other scientists in the field in conceiving their delivering platforms for clinical translation by providing solid examples of technologies that eventually were tested and sometimes approved for human therapy.
Collapse
Affiliation(s)
- Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Ekaterina P. Kolesova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Maya V. Voronina
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasia S. Frolova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Dmitry Kostyushev
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Daria B. Trushina
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Federal Scientific Research Center «Crystallography and Photonics», Russian Academy of Sciences, 119333 Moscow, Russia
| | - Roman Akasov
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Federal Scientific Research Center «Crystallography and Photonics», Russian Academy of Sciences, 119333 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Tatiana Pallaeva
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Federal Scientific Research Center «Crystallography and Photonics», Russian Academy of Sciences, 119333 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Andrey A. Zamyatnin
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
11
|
Sertcelik KNO, Karaman O, Almammadov T, Gunbas G, Kolemen S, Acar HY, Onbasli K. Selective on the outside deadly on the inside: Superior photodynamic therapy of EGFR1 positive colon cancer cells by selenophene‐BODIPY loaded SPIONs2. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Osman Karaman
- Middle East Technical University: Orta Dogu Teknik Universitesi Chemistry TURKEY
| | | | - Gorkem Gunbas
- Middle East Technical University: Orta Dogu Teknik Universitesi Chemistry TURKEY
| | | | | | - Kubra Onbasli
- Koc University: Koc Universitesi Chemistry Rumeli Feneri Yolu 34450 Istanbul TURKEY
| |
Collapse
|