1
|
Jiang C, Li X, Wan S, Ji S, Wang Q, Hu S, Chen P, Wang B, Ge T, Zhang J, Cao Y, Yang Y, Zhang D, Li Y, Zhang P. Copper-Doped Polydopamine Nanoparticles-Mediated GSH/GPX4-Depleted Ferroptosis and Cuproptosis Sensitizes Lung Tumor to Checkpoint Blockade Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503208. [PMID: 40231637 DOI: 10.1002/smll.202503208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Indexed: 04/16/2025]
Abstract
Immune checkpoint blockade (ICB) therapy offers hope for improved outcomes in lung cancer treatment, but its effectiveness is restricted by the presence of an immunosuppressive tumor microenvironment (TME), resulting in a limited response rate (< 20%). Here this study reports a tumor-site glutathione (GSH)/glutathione peroxidase (GPX4) dual-depletion strategy to induce tumor ferroptosis and amplify cuproptosis via a GSH-responsive polydopamine-based hybrid nanoparticle (termed CACuPDA). This approach triggers cellular lysis to reverse immunosuppressive TME and further enhance the therapeutic efficacy of lung tumors combined with anti-PD-L1-based ICB therapy. The released cinnamaldehyde (CA) can stimulate reactive oxygen species production, while Cu2+ can directly deplete GSH and suppress GPX4. Interestingly, Cu2+ induces cuproptosis by downregulating ferredoxin (FDX1) expression, whereas reduced Cu+ can catalyze hydroxyl radicals (·OH) generation from overexpressed H2O2 at the tumor site. The redox imbalance amplifies ferroptosis and cuproptosis in lung tumor cells, releasing substantial amounts of cellular contents into the immunosuppressive TME, as evidenced by an increased amount of cytotoxic T cells and a decreased amount of immunosuppressive Treg cells. In addition, in vivo experimental results revealed that CACuPDA enhanced the therapeutic effect of anti-PD-L1 by about fivefold for lung tumor treatment, providing a promising strategy to improve ICB therapy for lung tumors.
Collapse
Affiliation(s)
- Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Xianglong Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Shiyue Wan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Shuyu Ji
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Qinghua Wang
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Shiqi Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, P. R. China
| | - Pengcheng Chen
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Bo Wang
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, P. R. China
| | - Tao Ge
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Yuanyuan Cao
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Dapeng Zhang
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
2
|
Ye J, Li Y, Xu J, Li C, Qu J, Wang J, Chang Y, Lu Y, Cai Z, Wang C, Liang X, Li C, Cao J, Fu Y, Yang P. Seeding Janus Zn-Fe Diatomic Pairs on a Hollow Nanobox for Potent Catalytic Therapy. NANO LETTERS 2025; 25:1907-1916. [PMID: 39868470 DOI: 10.1021/acs.nanolett.4c05517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Dual atomic nanozymes (DAzymes) are promising for applications in the field of tumor catalytic therapy. Here, integrating with ultrasmall Fe5C2 nanoclusters, asymmetric coordination featuring Janus Zn-Fe dual-atom sites with an O2N2-Fe-Zn-N4 moiety embedded in a carbon vacancy-engineered hollow nanobox (Janus ZnFe DAs-Fe5C2) was elaborately developed. Theoretical calculation revealed that the synergistic effects of Zn centers acting as both adsorption and active sites, oxygen-heteroatom doping, carbon vacancy, and Fe5C2 nanoclusters jointly downshifted the d-band center of Fe 3d orbitals, optimizing the desorption behaviors of intermediates *OH, thereby significantly promoting catalytic activity. Upon 1064 nm laser irradiation, Janus ZnFe DAs-Fe5C2 with superior photothermal conversion efficiency (η = 62.5%) showed thermal-augmented catalytic therapy. Fascinatingly, Janus ZnFe DAs-Fe5C2 with multienzymatic properties can suppress the expression of glutathione peroxidase 4 and accelerate the accumulation of lipid peroxides, through which ferroptosis is triggered. Overall, tannin-involved asymmetric Janus ZnFe DAs-Fe5C2 will inspire more inventions of biodegradable DAzymes for tumor therapy application.
Collapse
Affiliation(s)
- Jin Ye
- Key Laboratory of Forest Plant Ecology, Ministry of Education College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yunlong Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150001, P. R. China
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Chunsheng Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Jiawei Qu
- Key Laboratory of Forest Plant Ecology, Ministry of Education College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Juan Wang
- School of Chemistry & Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Yuanhang Chang
- Key Laboratory of Forest Plant Ecology, Ministry of Education College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yong Lu
- Key Laboratory of Forest Plant Ecology, Ministry of Education College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Zhengmin Cai
- Guangxi University of Science and Technology, Liuzhou 545006, P. R. China
| | - Chen Wang
- Guangxi University of Science and Technology, Liuzhou 545006, P. R. China
| | - Xinqiang Liang
- Guangxi University of Science and Technology, Liuzhou 545006, P. R. China
| | - Chaorong Li
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Jun Cao
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
3
|
Wang L, Song K, Jiang C, Liu S, Huang S, Yang H, Li X, Zhao F. Metal-Coordinated Polydopamine Structures for Tumor Imaging and Therapy. Adv Healthc Mater 2024; 13:e2401451. [PMID: 39021319 DOI: 10.1002/adhm.202401451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Indexed: 07/20/2024]
Abstract
Meticulously engineered nanomaterials achieve significant advances in the diagnosis and therapy of solid tumors by improving tumor delivery efficiency; and thereby, enhancing imaging and therapeutic efficacy. Currently, polydopamine (PDA) attracts widespread attention because of its biocompatibility, simplicity of preparation, abundant surface groups, and high photothermal conversion efficiency, which can be applied in drug delivery, photothermal therapy, theranostics, and other nanomedicine fields. Inspired by PDA structures that are rich in catechol and amino functional groups that can coordinate with various metal ions, which have charming qualities and characteristics, metal-coordinated PDA structures are exploited for tumor theranostics, but are not thoroughly summarized. Herein, this review summarizes the recent progress in the fabrication of metal-coordinated PDA structures and their availabilities in tumor imaging and therapy, with further in-depth discussion of the challenges and future perspectives of metal-coordinated PDA structures, with the aim that this systematic review can promote interdisciplinary intersections and provide inspiration for the further growth and clinical translation of PDA materials.
Collapse
Affiliation(s)
- Lihua Wang
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Kaiyue Song
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Shanping Liu
- Library of Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Shaorong Huang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Huang Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310003, China
| | - Xianglong Li
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Feng Zhao
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| |
Collapse
|
4
|
Lin H, Jiang C, Wang B, Wang Y, Shangguan Z, Wu Y, Wang X, Huang Y, Wang L, Chen P, Li X, Zhong Z, Wu S. Glutathione degradable manganese-doped polydopamine nanoparticles for photothermal therapy and cGAS-STING activated immunotherapy of lung tumor. J Colloid Interface Sci 2024; 663:167-176. [PMID: 38401438 DOI: 10.1016/j.jcis.2024.02.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
Photothermal therapy (PTT), which utilizes nanomaterials to harvest laser energy and convert it into heat to ablate tumor cells, has been rapidly developed for lung tumor treatment, but most of the PTT-related nanomaterials are not degradable, and the immune response associated with PTT is unclear, which leads to unsatisfactory results of the actual PTT. Herein, we rationally designed and prepared a manganese ion-doped polydopamine nanomaterial (MnPDA) for immune-activated PTT with high efficiency. Firstly, MnPDA exhibited 57.2% photothermal conversion efficiency to accomplish high-efficiency PTT, and secondly, MnPDA can be stimulated by glutathione (GSH) to the release of Mn2+, and it can produce ·OH in a Fenton-like reaction with the overexpressed H2O2 and stimulate the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. These two synergistically can effectively remove lung tumor cells that have not been ablated by PTT, resulting in an 86.7% tumor suppression rate under laser irradiation of MnPDA in vivo, and further significantly activated the downstream immune response, as evidenced by an increased ratio of cytotoxic T cells to immunosuppressive Treg cells. Conclusively, the GSH degradable MnPDA nanoparticles can be used for photothermal therapy and cGAS-STING-activated immunotherapy of lung tumors, which provides a new idea and strategy for the future treatment of lung tumors.
Collapse
Affiliation(s)
- Heping Lin
- Department of Respiratory, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Bo Wang
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 201900, China
| | - Yubin Wang
- Department of Tumor Radiotherapy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Zongxiao Shangguan
- Department of Respiratory, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Youyi Wu
- Department of Tumor Radiotherapy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Xiaoyan Wang
- Department of Tumor Radiotherapy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Yiwei Huang
- Department of Tumor Radiotherapy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Lihua Wang
- Jiangxi Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Pengcheng Chen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xianglong Li
- Jiangxi Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Zhengrong Zhong
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 201900, China.
| | - Songsong Wu
- Department of Tumor Radiotherapy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
5
|
Zhang Y, Li L, Liu H, Zhang H, Wei M, Zhang J, Yang Y, Wu M, Chen Z, Liu C, Wang F, Wu Q, Shi J. Copper(II)-infused porphyrin MOF: maximum scavenging GSH for enhanced photodynamic disruption of bacterial biofilm. J Mater Chem B 2024; 12:1317-1329. [PMID: 38229564 DOI: 10.1039/d3tb02577b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Bacterial biofilm infection is a serious obstacle to clinical therapeutics. Photodynamic therapy (PDT) plays a dynamic role in combating biofilm infection by utilizing reactive oxygen species (ROS)-induced bacterial oxidation injury, showing advantages of mild side effects, spatiotemporal controllability and little drug resistance. However, superfluous glutathione (GSH) present in biofilm and bacteria corporately reduces ROS levels and seriously affects PDT efficiency. Herein, we have constructed a Cu2+-infused porphyrin metal-organic framework (MOF@Cu2+) for the enhanced photodynamic combating of biofilm infection by the maximum depletion of GSH. Our results show that the released Cu2+ from porphyrin MOF@Cu2+ could not only oxidize GSH in biofilm but also consume GSH leaked from ROS-destroyed bacteria, thus greatly weakening the antioxidant system in biofilm and bacteria and dramatically improving the ROS levels. As expected, our dual-enhanced PDT nanoplatform exhibits a strong biofilm eradication ability both in vitro and in an in vivo biofilm-infected mouse model. In addition, Cu2+ can promote biofilm-infected wound closing by provoking cell immigration, collagen sediment and angiogenesis. Besides, no apparent toxicity was detected after treatment with MOF@Cu2+. Overall, our design offers a new paradigm for photodynamic combating biofilm infection.
Collapse
Affiliation(s)
- Yaoxin Zhang
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Linpei Li
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Hui Liu
- Department of Pharmacy, Shangqiu First People's Hospital, Shangqiu 476100, China
| | - Haixia Zhang
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Menghao Wei
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Junqing Zhang
- School of Pharmacy, Henan University, Kaifeng 475004, China.
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, China.
| | - Yanwei Yang
- Department of Pharmacy, the First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Mengnan Wu
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhaowei Chen
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chaoqun Liu
- School of Pharmacy, Henan University, Kaifeng 475004, China.
- Department of Pharmacy, the First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Faming Wang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong 226019, China.
| | - Qiang Wu
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Jiahua Shi
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, China.
| |
Collapse
|
6
|
Hao JN, Ge K, Chen G, Dai B, Li Y. Strategies to engineer various nanocarrier-based hybrid catalysts for enhanced chemodynamic cancer therapy. Chem Soc Rev 2023; 52:7707-7736. [PMID: 37874584 DOI: 10.1039/d3cs00356f] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chemodynamic therapy (CDT) is a newly developed cancer-therapeutic modality that kills cancer cells by the highly toxic hydroxyl radical (˙OH) generated from the in situ triggered Fenton/Fenton-like reactions in an acidic and H2O2-overproduced tumor microenvironment (TME). By taking the advantage of the TME-activated catalytic reaction, CDT enables a highly specific and minimally-invasive cancer treatment without external energy input, whose efficiency mainly depends on the reactant concentrations of both the catalytic ions and H2O2, and the reaction conditions (including pH, temperature, and amount of glutathione). Unfortunately, it suffers from unsatisfactory therapy efficiency for clinical application because of the limited activators (i.e., mild acid pH and insufficient H2O2 content) and overexpressed reducing substance in TME. Currently, various synergistic strategies have been elaborately developed to increase the CDT efficiency by regulating the TME, enhancing the catalytic efficiency of catalysts, or combining with other therapeutic modalities. To realize these strategies, the construction of diverse nanocarriers to deliver Fenton catalysts and cooperatively therapeutic agents to tumors is the key prerequisite, which is now being studied but has not been thoroughly summarized. In particular, nanocarriers that can not only serve as carriers but are also active themselves for therapy are recently attracting increasing attention because of their less risk of toxicity and metabolic burden compared to nanocarriers without therapeutic capabilities. These therapy-active nanocarriers well meet the requirements of an ideal therapy system with maximum multifunctionality but minimal components. From this new perspective, in this review, we comprehensively summarize the very recent research progress on nanocarrier-based systems for enhanced CDT and the strategies of how to integrate various Fenton agents into the nanocarriers, with particular focus on the studies of therapy-active nanocarriers for the construction of CDT catalysts, aiming to guide the design of nanosystems with less components and more functionalities for enhanced CDT. Finally, the challenges and prospects of such a burgeoning cancer-theranostic modality are outlooked to provide inspirations for the further development and clinical translation of CDT.
Collapse
Affiliation(s)
- Ji-Na Hao
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Kaiming Ge
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Guoli Chen
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Bin Dai
- School of Chemistry and Chemical Engineering, Pharmacy School, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Yongsheng Li
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
- School of Chemistry and Chemical Engineering, Pharmacy School, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
7
|
Yang G, Su Q, Lv J, Zheng Y, Song T, Zhang H, Li M, Zhou W, Li T, Qin X, Li S, Wu C, Liao X, Liu Y, Yang H. Bio-inspired Oxidative Stress Amplifier for Suppressing Cancer Metastasis and Imaging-Guided Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6572-6583. [PMID: 36709501 DOI: 10.1021/acsami.2c22558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Antioxidant-defense systems of tumor cells protect them from oxidative damage and is strongly associated with tumor metastasis. In this work, a mussel-inspired multifunctional nanomedicine (ZS-MB@P) has been designed for inhibiting tumor growth and metastasis through amplified oxidative stress and photothermal/magnetothermal/photodynamic triple-combination therapy. This nanomedicine was fabricated via loading a silica shell on the magnetic nano-octahedrons [zinc-doped magnetic Fe3O4 nano-octahedrons] by encapsulating photosensitizer methylene blue (MB) and subsequently coating polydopamine (PDA) shells as "gatekeeper." The nanomedicine could realize photothermal therapy, photodynamic therapy, and magnetic hyperthermia after treatment with near-infrared (NIR) irradiation and applied magnetic field. Under pH and NIR stimulation, controlled amount of MB was released to produced exogenous reactive oxygen species. Noteworthy, PDA can amplify intracellular oxidative stress by depleting glutathione, thus inhibiting breast cancer metastasis effectively since oxidative stress is an important barrier to tumor metastasis. The outstanding ability to suppress tumor growth and metastasis was comprehensively assessed and validated both in vitro and in vivo. Moreover, the nanomedicine showed outstanding T2 magnetic resonance imaging for tracking the treatment process. Taken together, this work offers an innovative approach in the synergistic treatment of recalcitrant breast cancer.
Collapse
Affiliation(s)
- Geng Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Qingqing Su
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Jiazhen Lv
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Yue Zheng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Ting Song
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Hanxi Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Mengyue Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Wanyi Zhou
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Tingting Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Xiang Qin
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Shun Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Chunhui Wu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Yiyao Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, P. R. China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Hong Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| |
Collapse
|