1
|
Wang M, Prasad A, Garrison NG, Rao P, Kwon HK, Siegler MA, Lectka T. Catalysis of Free C-C Bond Rotation: C-F---H-X H-Bonds Find a Catalytic Role. J Am Chem Soc 2025; 147:5577-5582. [PMID: 39925218 DOI: 10.1021/jacs.4c17384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
There are few dynamic processes in organic chemistry that are more central to the molecular structure than C-C bond rotation. It is notable, however, that there exist few (if any) cases in which its hindered variants can actually be catalyzed. In this communication, we report a unique model system for the clear documentation of the catalysis of 360° C-C bond rotation that employs a transient but key N-H---F-C hydrogen bond as a linchpin and secondary "dual" charge-induced n → π* interactions and ion pairing effects that bolster catalysis.
Collapse
Affiliation(s)
- Muyuan Wang
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Aarush Prasad
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Nathaniel G Garrison
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Prabodh Rao
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Hyeok-Kyu Kwon
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Lin B, Liu H, Scott HM, Karki I, Vik EC, Madukwe DO, Pellechia PJ, Shimizu KD. Transition State Stabilizing Effects of Oxygen and Sulfur Chalcogen Bond Interactions. Chemistry 2024; 30:e202402011. [PMID: 39024522 DOI: 10.1002/chem.202402011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Non-covalent chalcogen bond (ChB) interactions have found utility in many fields, including catalysis, organic semiconductors, and crystal engineering. In this study, the transition stabilizing effects of ChB interactions of oxygen and sulfur were experimentally measured using a series of molecular rotors. The rotors were designed to form ChB interactions in their bond rotation transition states. This enabled the kinetic influences to be assessed by monitoring changes in the rotational barriers. Despite forming weaker ChB interactions, the smaller chalcogens were able to stabilize transition states and had measurable kinetic effects on the rotational barriers. Sulfur stabilized the bond rotation transition state by as much as -7.2 kcal/mol without electron-withdrawing groups. The key was to design a system where the sulfur σ ${\sigma }$ -hole was aligned with the lone pairs of the chalcogen bond acceptor. Oxygen rotors also could form transition state stabilizing ChB interactions but required electron-withdrawing groups. For both oxygen and sulfur ChB interactions, a strong correlation was observed between transition state stabilizing abilities and electrostatic potential (ESP) of the chalcogen, providing a useful predictive parameter for the rational design of future ChB systems.
Collapse
Affiliation(s)
- Binzhou Lin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Hao Liu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Harrison M Scott
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Ishwor Karki
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Erik C Vik
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Daniel O Madukwe
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Perry J Pellechia
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Ken D Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
3
|
Falcioni F, Bennett S, Stroer-Jarvis P, Popelier PLA. Probing Non-Covalent Interactions through Molecular Balances: A REG-IQA Study. Molecules 2024; 29:1043. [PMID: 38474554 DOI: 10.3390/molecules29051043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The interaction energies of two series of molecular balances (1-X with X = H, Me, OMe, NMe2 and 2-Y with Y = H, CN, NO2, OMe, NMe2) designed to probe carbonyl…carbonyl interactions were analysed at the B3LYP/6-311++G(d,p)-D3 level of theory using the energy partitioning method of Interacting Quantum Atoms/Fragments (IQA/IQF). The partitioned energies are analysed by the Relative Energy Gradient (REG) method, which calculates the correlation between these energies and the total energy of a system, thereby explaining the role atoms have in the energetic behaviour of the total system. The traditional "back-of-the-envelope" open and closed conformations of molecular balances do not correspond to those of the lowest energy. Hence, more care needs to be taken when considering which geometries to use for comparison with the experiment. The REG-IQA method shows that the 1-H and 1-OMe balances behave differently to the 1-Me and 1-NMe2 balances because the latter show more prominent electrostatics between carbonyl groups and undergoes a larger dihedral rotation due to the bulkiness of the functional groups. For the 2-Y balance, REG-IQA shows the same behaviour across the series as the 1-H and 1-OMe balances. From an atomistic point of view, the formation of the closed conformer is favoured by polarisation and charge-transfer effects on the amide bond across all balances and is counterbalanced by a de-pyramidalisation of the amide nitrogen. Moreover, focusing on the oxygen of the amide carbonyl and the α-carbon of the remaining carbonyl group, electrostatics have a major role in the formation of the closed conformer, which goes against the well-known n-π* interaction orbital overlap concept. However, REG-IQF shows that exchange-correlation energies overtake electrostatics for all the 2-Y balances when working with fragments around the carbonyl groups, while they act on par with electrostatics for the 1-OMe and 1-NMe2. REG-IQF also shows that exchange-correlation energies in the 2-Y balance are correlated to the inductive electron-donating and -withdrawing trends on aromatic groups. We demonstrate that methods such as REG-IQA/IQF can help with the fine-tuning of molecular balances prior to the experiment and that the energies that govern the probed interactions are highly dependent on the atoms and functional groups involved.
Collapse
Affiliation(s)
- Fabio Falcioni
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Sophie Bennett
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Pallas Stroer-Jarvis
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Paul L A Popelier
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
4
|
Xiao H, Hu WY, Wang Q, Zeng CH, Li HH, Liu H, Du ZY, He CT. Molecular rotators anchored on a rod-like anionic coordination polymer adhered by charge-assisted hydrogen bonds. Phys Chem Chem Phys 2024; 26:3974-3980. [PMID: 38221866 DOI: 10.1039/d3cp05597c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
On the basis of variable-temperature single-crystal X-ray diffraction, variable-temperature/frequency dielectric analysis, variable-temperature solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations, here we present a new model of crystalline supramolecular rotor (i-PrNHMe2)[CdBr3], where a conformationally flexible near-spherical (i-PrNHMe2)+ cation functions as a rotator and a rod-like anionic coordination polymer {[CdBr3]-}∞ acts as the stator, and the adhesion of them is realized by charge-assisted hydrogen bonds.
Collapse
Affiliation(s)
- Hui Xiao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Wei-Yu Hu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Qing Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cheng-Hui Zeng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Hao-Hong Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Haiming Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zi-Yi Du
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Chun-Ting He
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
5
|
Roos CB, Chiang CH, Murray LAM, Yang D, Schulert L, Narayan ARH. Stereodynamic Strategies to Induce and Enrich Chirality of Atropisomers at a Late Stage. Chem Rev 2023; 123:10641-10727. [PMID: 37639323 DOI: 10.1021/acs.chemrev.3c00327] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Enantiomers, where chirality arises from restricted rotation around a single bond, are atropisomers. Due to the unique nature of the origins of their chirality, synthetic strategies to access these compounds in an enantioselective manner differ from those used to prepare enantioenriched compounds containing point chirality arising from an unsymmetrically substituted carbon center. In particular stereodynamic transformations, such as dynamic kinetic resolutions, thermodynamic dynamic resolutions, and deracemizations, which rely on the ability to racemize or interconvert enantiomers, are a promising set of transformations to prepare optically pure compounds in the late stage of a synthetic sequence. Translation of these synthetic approaches from compounds with point chirality to atropisomers requires an expanded toolbox for epimerization/racemization and provides an opportunity to develop a new conceptual framework for the enantioselective synthesis of these compounds.
Collapse
|
6
|
Abstract
While a good deal of information has accumulated concerning the manner in which an intramolecular noncovalent bond can affect the relative energies of various conformers, less is known about how such bonds might affect the dynamics of interconversion between them. A series of molecules are constructed in which symmetrically equivalent conformers containing a noncovalent bond can be interconverted by a bond rotation, the energy barrier to which is computed by quantum chemical methods. The rotation of a CF3 group attached to a phenyl ring is speeded up if a Se··F chalcogen bond can be formed with a SeH or SeF group placed in an ortho position, a bond that is present in and stabilizes the rotational transition state. The analogous SnF3 group can, on the other hand, engage in a Sn··Se tetrel bond in its global minimum. The energetic cost of breakage of this bond is not fully compensated by the appearance of a Se··F chalcogen bond in the rotational transition state. Other systems were designed by placing two phenyl rings on opposite ends of an octahedrally disposed SeF4 group. A high barrier inhibits their rotation with bulky Br atoms in ortho positions, but this barrier is lowered if Br is replaced by groups that can engage in either chalcogen (SeH or SeF) or pnicogen (AsH2) bonds with the F atoms in the rotational transition state. The barrier reduction is closely related to the strength of these noncovalent bonds.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
7
|
Saha S, Kundu S, Biswas PK, Bolte M, Schmittel M. Dynamics of the alkyne → copper( i) interaction and its use in a heteroleptic four-component catalytic rotor. Chem Commun (Camb) 2022; 58:13019-13022. [DOI: 10.1039/d2cc04497h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dynamics of alkyne → copper(i) interactions has been determined and used to self-assemble a fast nanorotor, which underwent a self-catalyzed click transformation to a triazole rotor, an interesting process for the production of biohybrid devices.
Collapse
Affiliation(s)
- Suchismita Saha
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| | - Sohom Kundu
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| | - Pronay Kumar Biswas
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| | - Michael Bolte
- Institut für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, Frankfurt am Main D-60438, Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| |
Collapse
|