1
|
Li Y, Li S, Du H, Hao Y, Cheng YN, Liu X, Yang X. Synthesis of Polycyclic Heteroarenes via Rh(III)-Catalyzed Twofold C-H Activation of 3-Aryl-2 H-benzo[ b][1,4]oxazines and Annulation with α-Diazo-β-ketoesters. J Org Chem 2025; 90:4337-4346. [PMID: 40085740 DOI: 10.1021/acs.joc.5c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
An efficient Rh(III)-catalyzed annulation between 3-aryl-2H-benzo[b][1,4]oxazines and α-diazo-β-ketoesters was developed, affording a series of polycyclic heteroarenes in moderate to excellent yields with good functional group compatibility. The procedure featured high efficiency, redox neutrality, twofold ortho-C-H activation, and dual [4 + 2] annulation. Moreover, several important intermediates and products have been isolated as powerful evidence for the proposed reaction mechanism.
Collapse
Affiliation(s)
- Yiyue Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Song Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Haokang Du
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Youwu Hao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yi-Nan Cheng
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangyang Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xifa Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
2
|
Yang Z, Luo J, Zhang W, Lei J, Liu C, Li Y. Rhodium(III)-catalyzed direct C-H activation of 2-aryl-3 H-indoles: a strategy for 4-heteroaryl pyrazole synthesis. Org Biomol Chem 2025; 23:323-327. [PMID: 39600199 DOI: 10.1039/d4ob01655f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A novel protocol for synthesizing 4-heteroaryl pyrazoles from readily available 2-aryl-3H-indoles and diazopyrazolones through the rhodium(III)-catalyzed C-H bond activation has been achieved. This redox-neutral strategy features powerful reactivity, tolerates various functional groups, and proceeds with moderate yields under mild reaction conditions.
Collapse
Affiliation(s)
- Zi Yang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, P. R. China.
| | - Ji Luo
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, P. R. China
| | - Wenbo Zhang
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, P. R. China
| | - Jieni Lei
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, P. R. China.
| | - Chaoshui Liu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, P. R. China
| | - Yaqian Li
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, P. R. China.
| |
Collapse
|
3
|
Wang X, Yang C, Chen D, Chen P, Wang Y, Cao B, Qiao C, Szostak M. Synthesis of Functionalized Indoles by an Iridium-Catalyzed N-H Insertion Cascade: Nucleophilic Cyclization of Naphthylamines with α-Diazocarbonyl Compounds. J Org Chem 2024; 89:18291-18300. [PMID: 39606850 DOI: 10.1021/acs.joc.4c02132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A novel iridium-catalyzed [3 + 2] annulation of naphthylamines and α-diazocarbonyl compounds was developed for the rapid assembly of densely functionalized indoles. This new catalytic process represents the first example of a cascade intramolecular nucleophilic cyclization by the N-H insertion of amines. Various naphthylamines and α-diazocarbonyl compounds could be obtained in high yields with excellent functional group tolerance. The reaction affords valuable indole derivatives, enabling expedient access to novel heterocyclic analogues not easily accessible by other methods.
Collapse
Affiliation(s)
- Xiaogang Wang
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean and Efficient Conversion and New Materials, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Chi Yang
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean and Efficient Conversion and New Materials, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Di Chen
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an 710021, China
| | - Pu Chen
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Science, Baoji 721013, China
| | - Yishou Wang
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean and Efficient Conversion and New Materials, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Baoyue Cao
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean and Efficient Conversion and New Materials, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Chengfang Qiao
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean and Efficient Conversion and New Materials, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
4
|
Wen M, Zhang M, Gu F, Geng Y, Liu X, Wu Q, Yang X. Synthesis of spiropyrans via Ru(II)-catalyzed coupling of 3-aryl-2 H-benzo[ b][1,4]oxazines with benzoquinones. Org Biomol Chem 2024; 22:998-1009. [PMID: 38186088 DOI: 10.1039/d3ob01971c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
An efficient Ru(II)-catalyzed C-H activation-based spiroannulation of benzoxazines with the easily available benzoquinone and N-sulfonyl quinone monoimine has been realized, providing a straightforward strategy to access NH-containing spiropyrans in moderate to good yields with good functional group compatibility. The procedure features atom- and step-economy, mild conditions, and excellent chemoselectivity. Moreover, a catalytically competent five-membered cycloruthenated complex has been isolated.
Collapse
Affiliation(s)
- Mengke Wen
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Mengying Zhang
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Fan Gu
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yuehua Geng
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xiangyang Liu
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Qingnan Wu
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xifa Yang
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
5
|
Qin Y, Wang Y, Deng R, Pei Z, Xiong HY, Wang T, Zhang G. Straightforward Access to Free β 2,3,3 -Amino Acids through One Pot C-H Activation/C-C Cleavage. Chemistry 2024:e202304254. [PMID: 38236073 DOI: 10.1002/chem.202304254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/19/2024]
Abstract
The first synthesis of unnatural β2,3,3 -amino acids with a spirocyclic backbone by one-pot protocol has been presented. This reaction features wide functional group tolerance and feasibility of post-functionalization of natural products and biologically important molecules. Novel dipeptide and tripeptide structures were assembled using this newly developed β2,3,3 -amino acid in high efficiency. The combination of C-H activation and C-C cleavage for the synthesis of β-amino acids would trigger more promising synthetic routes for this compound.
Collapse
Affiliation(s)
- Yibo Qin
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P.R. China
| | - Yaping Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P.R. China
| | - Ruwendan Deng
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P.R. China
| | - Zengkai Pei
- Tianjin Kailiqi Biopharma Technology Co., Ltd, Tianjin, 300190, P.R. China
| | - Heng-Ying Xiong
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P.R. China
| | - Teng Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guangwu Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P.R. China
| |
Collapse
|
6
|
Zhang M, He Y, Li S, Geng Y, Liu X, Yang X. Synthesis of spiropyrans and arylquinones via Ru(II)-catalyzed condition-controlled coupling of 3-aryl-2 H-benzoxazinones with benzoquinones. Chem Commun (Camb) 2023; 59:11704-11707. [PMID: 37700730 DOI: 10.1039/d3cc03395c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Ru(II)-catalyzed condition-controlled divergent coupling between 3-aryl-2H-benzoxazin-2-ones and benzoquinones has been realized under operationally simple conditions, affording a series of structurally stable spiropyrans and valuable arylquinones. The potential of this method is also demonstrated by scale-up synthesis and derivatization. Additionally, an unprecedented cycloruthenated complex has been identified as a key intermediate.
Collapse
Affiliation(s)
- Mengying Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yuhao He
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Song Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yuehua Geng
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xiangyang Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xifa Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
7
|
Wei QY, Zhou Z, Yao ML, Liu JK, Wu B, Yang JM. Rhodium(III)-catalyzed intermolecular [3+3] annulation of benzoxazines with quinone compounds: access to spiro-heterocyclic scaffolds. Chem Commun (Camb) 2023; 59:11520-11523. [PMID: 37671924 DOI: 10.1039/d3cc03609j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
A rhodium(III)-catalyzed redox-neutral spiroannulation approach to access the spiro[benzo[b][1,4]oxazine-benzo[c]chromene skeleton is described in this contribution. A variety of spiro[5.5]-heterocyclic scaffolds were obtained in moderate to excellent yields under mild conditions. Key features of this protocol are good substrate scope, silver-free conditions, low catalyst loadings, easy handling under air and 100% atom economy. Furthermore, scale-up reactions and late-stage derivatizations highlight the potential synthetic utility of this methodology.
Collapse
Affiliation(s)
- Qing-Yi Wei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Ze Zhou
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Meng-Lian Yao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Bin Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Jin-Ming Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, People's Republic of China
| |
Collapse
|
8
|
Gao J, Luo K, Wei X, Wang H, Liu H, Zhou Y. Rh(III)-Catalyzed Successive C-H Activations of 2-Phenyl-3 H-indoles and Cyclization Cascades to Construct Highly Fused Indole Heteropolycycles. Org Lett 2023; 25:3341-3346. [PMID: 37144839 DOI: 10.1021/acs.orglett.3c00445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Rh(III)-catalyzed successive C-H activations of 2-phenyl-3H-indoles and cyclization cascades with diazo compounds were developed to construct highly fused indole heteropolycycles with a broad range of substrates and good yields. In particular, this transformation included two successive C-H activations and unusual [3+3] and [4+2] sequential cyclization cascades, in which the diazo compound played a different role in the two cyclization processes, while simultaneously forming a highly fused polycyclic indole scaffold with a new quaternary carbon center.
Collapse
Affiliation(s)
- Ju Gao
- College of Pharmacy, Weifang Medical College, Weifang 261053, China
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Keyu Luo
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui Wei
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hao Wang
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hong Liu
- College of Pharmacy, Weifang Medical College, Weifang 261053, China
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhou
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Yue X, Gao Y, Huang J, Feng Y, Cui X. Rhodium-Catalyzed [4 + 2] Cascade Annulation to Easy Access N-Substituted Indenoisoquinolinones. Org Lett 2023; 25:2923-2927. [PMID: 37114383 DOI: 10.1021/acs.orglett.3c01032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
An efficient approach for the synthesis of N-substituted indenoisoquinolinones via rhodium(III)-catalyzed C-H bond activation/subsequent [4 + 2] cyclization starting from easily available 2-phenyloxazolines and 2-diazo-1,3-indandiones has been developed. A series of indeno[1,2-c]isoquinolinones were obtained in up to 93% yield through C-H functionalization, followed by intramolecular annulation, elimination, and ring-opening in a "one pot manner" under mild reaction conditions. This protocol features excellent atom- and step-economy and provides a novel strategy for the synthesis of N-substituted indenoisoquinolinones and a chance to study their biological activities.
Collapse
Affiliation(s)
- Xuelin Yue
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Yijie Gao
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Junwei Huang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Yadong Feng
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province and Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian 361023, P. R. China
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
10
|
Yang X, Li S, He Y, Dai D, Bao M, Luo Z, Liu X, Geng Y, Fan L. Rhodium(III)-catalyzed oxidative cross-coupling of benzoxazinones with styrenes via C-H activation. Org Biomol Chem 2023; 21:797-806. [PMID: 36594562 DOI: 10.1039/d2ob01655a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vinylarenes represent an important class of core skeleton embedded in natural products, organic materials, and pharmaceutical molecules. Therefore, numerous efforts have been devoted to developing efficient methods for their preparation. Among them, transition-metal-catalyzed oxidative coupling of arenes and alkenes has proved to be a powerful method due to its high atom and step economy. Although a wide range of oxidative alkenylations of arenes have been developed, the alkenes employed in most cases are still limited to electron-deficient alkenes. Reported herein is a Rh(III)-catalyzed C-H cross-coupling of benzoxazinones and simple unactivated styrenes to furnish a variety of vinylarene scaffolds. This established protocol is characterized by wide functional group compatibility, high yields, and excellent regio- and chemo-selectivity. Mechanistic studies and gram-scale experiments on this high-value conversion are disclosed. Moreover, the potential utility of this method was highlighted by a series of further transformations.
Collapse
Affiliation(s)
- Xifa Yang
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Song Li
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yuhao He
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Danhua Dai
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Mengyao Bao
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Ziyang Luo
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xiangyang Liu
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yuehua Geng
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Liangxin Fan
- College of Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
11
|
Zhou B, Yang G, Wang C, Liu L, Shi L, Pan Z, Ji X, Wu L, Zheng H, Xu C, Fan L. Highly Chemoselective Synthesis of Azaarene-Equipped CF 3-Tertiary Alcohols under Metal-Free Conditions and Their Fungicidal Activities. ACS OMEGA 2022; 7:38084-38093. [PMID: 36312435 PMCID: PMC9609063 DOI: 10.1021/acsomega.2c05855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 05/16/2023]
Abstract
A highly chemoselective reaction between α,β-unsaturated trifluoromethyl ketones with azaarenes under metal-free conditions was carried out, affording a range of valuable azaarene-equipped CF3-tertiary alcohols in moderate to excellent yields (up to 95% yield) with good tolerance of functional groups, and their structures were confirmed by NMR, HRMS, and X-ray diffraction for validation. This method features simple reaction conditions (only solvent), high atom- and step-economy, and broad substrate scope. Moreover, most of the target products exhibited promising fungicidal activities, and compound 3al exhibited 91.65% fungicidal activity against R. solani, with an EC50 value of 0.18 mg/mL.
Collapse
Affiliation(s)
- Bingyi Zhou
- College
of Sciences, Henan Agricultural University, Zhengzhou 450002, China
- College
of Tobacco Sciences, Henan Agricultural
University, Zhengzhou 450002, China
| | - Guoyu Yang
- College
of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Caixia Wang
- College
of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Lijie Liu
- College
of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Lijun Shi
- College
of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhenliang Pan
- College
of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoming Ji
- College
of Tobacco Sciences, Henan Agricultural
University, Zhengzhou 450002, China
| | - Lulu Wu
- College
of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Huayu Zheng
- College
of Sciences, Chang’an University, Xi’an 710064, China
| | - Cuilian Xu
- College
of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Liangxin Fan
- College
of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
12
|
Synthesis of Novel Indole Schiff Base Compounds and Their Antifungal Activities. Molecules 2022; 27:molecules27206858. [PMID: 36296452 PMCID: PMC9609699 DOI: 10.3390/molecules27206858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
A series of novel indole Schiff base derivatives (2a–2t) containing a 1,3,4-thiadiazole scaffold modified with a thioether group were synthesized, and their structures were confirmed using FT-IR, 1H NMR, 13C NMR, and HR-MS. In addition, the antifungal activity of synthesized indole derivatives was investigated against Fusarium graminearum (F. graminearum), Fusarium oxysporum (F. oxysporum), Fusariummoniliforme (F.moniliforme), Curvularia lunata (C. lunata), and Phytophthora parasitica var. nicotiana (P. p. var. nicotianae) using the mycelium growth rate method. Among the synthesized indole derivatives, compound 2j showed the highest inhibition rates of 100%, 95.7%, 89%, and 76.5% at a concentration of 500 μg/mL against F. graminearum, F. oxysporum, F.moniliforme, and P. p. var. nicotianae, respectively. Similarly, compounds 2j and 2q exhibited higher inhibition rates of 81.9% and 83.7% at a concentration of 500 μg/mL against C. lunata. In addition, compound 2j has been recognized as a potential compound for further investigation in the field of fungicides.
Collapse
|