1
|
Huang C, Liu R, Ding Y, Zhao L, Zhu Z, Li Q, Jiang D, Wu Y, Yu X, Ding S, Gao X, Zhu R. Template-assembly activation of primer exchange reaction for on-site and sensitive detection of copper ions in blood. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125702. [PMID: 39793253 DOI: 10.1016/j.saa.2025.125702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
The sensitive and accurate detection of copper ions is crucial for public health, medical research, and environmental monitoring. In this study, we developed a sensor based on template-assembly activation of the primer exchange reaction (PER) for the on-site detection of copper ions in blood. Copper ions triggered the assembly of two template fragments into a hairpin structure via a click-chemistry reaction, activating the PER. Polymerase then repeatedly guided the polymerization of multiple primers along the assembled PER template, generating amplified products containing G-triplex sequences. These G-triplex structures specifically enhanced the fluorescence of thioflavin T and exhibited peroxidase-like activity, serving as dual-functional signal reporters for both fluorescence and colorimetric outputs. The sensor effectively amplified a single copper ion signal into multiple G-triplex signals, achieving high sensitivity with detection limits of 68.5 nM in fluorescence mode and 70.4 nM in colorimetric mode. The system also demonstrated strong selectivity, due to the high specificity of the click-chemistry reaction for copper ions. The dual-mode detection minimized false signals and improved accuracy through cross-verification. Additionally, both fluorescence and colorimetric signals were easily measurable without complex instrumentation, enabling flexible application. The method was successfully applied to blood samples, showcasing its robust performance. This sensor offers a promising alternative for copper ion detection with broad potential applications in public health, medical research, and environmental monitoring.
Collapse
Affiliation(s)
- Chao Huang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China
| | - Rui Liu
- Nanchang Center for Disease Control and Prevention, Nanchang, PR China; Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, PR China
| | - Yue Ding
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Linlin Zhao
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Zongmin Zhu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China
| | - Qiyan Li
- Shandong Institute for Food and Drug Control, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Jinan 250101, PR China
| | - Dafeng Jiang
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan 250001, PR China
| | - Yuxin Wu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, PR China
| | - Xuemei Yu
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao 276800, PR China
| | - Shengyong Ding
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China.
| | - Xibao Gao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, PR China.
| | - Riran Zhu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China.
| |
Collapse
|
2
|
Zhang J, Yao W, Mao X, Hu X, Lv L, Qi H. A microfluidic DNA sensor array for real-time screening of early-stage lung cancer by simultaneous detection of multiple miRNAs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2376-2379. [PMID: 40035312 DOI: 10.1039/d5ay00109a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
We present a DNA sensor array for simultaneous detection of four targeted miRNAs in serum for early-stage lung cancer screening. Owing to effective microfluidic enrichment coupled with ultrasensitive solid-liquid capacitive sensing, the detection limit is as low as 12.84-24.69 aM, with a dynamic range of 0.1 fM to 10 pM. The response time for each miRNA detection is only 30 s, and the total detection time is 120 s. The selectivity reaches above 10 000 : 1. The miRNA concentrations in the patients with early-stage lung cancer are determined to be 6.5-263 times higher than those in healthy individuals, demonstrating the excellent feasibility of this sensor array for clinical applications for real-time screening of early-stage lung cancer.
Collapse
Affiliation(s)
- Jian Zhang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Wen Yao
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Xuanjiao Mao
- Clinical Laboratory, The People's Hospital of Pingyang, Wenzhou 325400, China.
| | - Xinyu Hu
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Li Lv
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Haochen Qi
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
3
|
Li W, Liu WJ, Lu J, Ma F, Zhang CY. A Programmable Automatic Cascade Machinery for Single-Molecule Profiling of Multiple Noncoding RNAs in Breast Tissues. Anal Chem 2025; 97:4224-4232. [PMID: 39930751 DOI: 10.1021/acs.analchem.4c07017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Noncoding RNAs (ncRNAs) are identified as critical regulatory molecules in tumorigenesis and progression. Investigating the expression patterns of multiple ncRNAs in living cells and tissues may facilitate the diagnosis of cancers. Herein, we develop a programmable automatic cascade machinery for single-molecule profiling of multiple ncRNAs. This method involves two successive amplification events that can convert extremely low-abundance target ncRNAs into abundant FAM/Cy5 molecules for the generation of amplified fluorescence signals. The subsequent single-molecule detection can identify piR-36026 with the FAM signal and DSCAM-AS1 with the Cy5 signal. Due to the high efficiency of automatic cascade machinery and the high signal-to-noise ratio of single-molecule imaging, this method can achieve sensitive detection of multiple ncRNAs with a detection limit of 44.67 aM for piR-36026 and 45.71 aM for DSCAM-AS1, and it can measure endogenous piR-36026 and DSCAM-AS1 at the single-cell level. Moreover, the profiling of piR-36026 and DSCAM-AS1 in healthy tissues and breast cancer tissues demonstrates the feasibility of the proposed method in cancer diagnostics. By programming the recognition sequences of dumbbell probes, this method can be extended to measure other cancer-related ncRNAs, with great prospects in clinical applications.
Collapse
Affiliation(s)
- Wen Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Wen-Jing Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand
| | - Fei Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
4
|
Wang K, Chang Z, Li Y, Wang Y, Tang Y, Gao X, Tang B. Precise detection of NSE and ProGRP with nanoprobes for early diagnosis of small cell lung cancer. Chem Commun (Camb) 2025; 61:3179-3182. [PMID: 39876812 DOI: 10.1039/d4cc06230b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
A DNA strand-based fluorescent probe was developed for the direct simultaneous detection of small cell lung cancers' tumor markers NSE and ProGRP. The probe offers stability, simplicity, and rapid response, making it highly promising for application in clinical serum samples' diagnosis.
Collapse
Affiliation(s)
- Keyi Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Zixuan Chang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yingjie Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yinian Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yue Tang
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, 250014, P. R. China.
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
- Laoshan Laboratory, 168Wenhai Middle Rd, Aoshanwei Jimo, Qingdao 266237, P. R. China
| |
Collapse
|
5
|
Zhang J, Liu J, Qiao L, Zhang Q, Hu J, Zhang CY. Recent Advance in Single-Molecule Fluorescent Biosensors for Tumor Biomarker Detection. BIOSENSORS 2024; 14:540. [PMID: 39589999 PMCID: PMC11591580 DOI: 10.3390/bios14110540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
The construction of biosensors for specific, sensitive, and rapid detection of tumor biomarkers significantly contributes to biomedical research and early cancer diagnosis. However, conventional assays often involve large sample consumption and poor sensitivity, limiting their further application in real samples. In recent years, single-molecule biosensing has emerged as a robust tool for detecting and characterizing biomarkers due to its unique advantages including simplicity, low sample consumption, ultra-high sensitivity, and rapid assay time. This review summarizes the recent advances in the construction of single-molecule biosensors for the measurement of various tumor biomarkers, including DNAs, DNA modifications, RNAs, and enzymes. We give a comprehensive review about the working principles and practical applications of these single-molecule biosensors. Additionally, we discuss the challenges and limitations of current single-molecule biosensors, and highlight the future directions.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China (C.-y.Z.)
| | - Jiawen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Lixue Qiao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Qian Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China (C.-y.Z.)
| | - Chun-yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China (C.-y.Z.)
| |
Collapse
|
6
|
Zhang J, Xie B, He H, Gao H, Liao F, Fu H, Liao Y. Target-assisted self-cleavage DNAzyme electrochemical biosensor for MicroRNA detection with signal amplification. Chem Commun (Camb) 2024; 60:12904-12907. [PMID: 39415671 DOI: 10.1039/d4cc04190a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In this work, we reported an electrochemical biosensor with target-assisted self-cleavage DNAzyme function for signal amplified detection of miRNA. The target-recycling amplification led to significant signal enhancement and thus offers high detection sensitivity.
Collapse
Affiliation(s)
- Juan Zhang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, China West Normal University, Nanchong, Sichuan 637000, China.
| | - Benting Xie
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, China West Normal University, Nanchong, Sichuan 637000, China.
| | - Haonan He
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, China West Normal University, Nanchong, Sichuan 637000, China.
| | - Hejun Gao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, China West Normal University, Nanchong, Sichuan 637000, China.
| | - Fang Liao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, China West Normal University, Nanchong, Sichuan 637000, China.
| | - Hongquan Fu
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, China West Normal University, Nanchong, Sichuan 637000, China.
| | - Yunwen Liao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, China West Normal University, Nanchong, Sichuan 637000, China.
| |
Collapse
|
7
|
Feng Y, Yang J, He Z, Liu X, Ma C. CRISPR-Cas-based biosensors for the detection of cancer biomarkers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6634-6653. [PMID: 39258950 DOI: 10.1039/d4ay01446d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Along with discovering cancer biomarkers, non-invasive detection methods have played a critical role in early cancer diagnosis and prognostic improvement. Some traditional detection methods have been used for detecting cancer biomarkers, but they are time-consuming and involve materials and human costs. With great flexibility, sensitivity and specificity, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated system provides a wide range of application prospects in this field. Herein, we introduce the background of the CRISPR-Cas (CRISPR-associated) system and comprehensively summarize the diagnosis strategies of cancer mediated by the CRISPR-Cas system, including four kinds of biochemical-based markers: nucleic acid, enzyme, tumor-specific protein and exosome. Furthermore, we discuss the challenges in implementing the CRISPR-Cas system in clinical applications.
Collapse
Affiliation(s)
- Yuxin Feng
- School of Life Sciences, Central South University, Changsha 410013, China.
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Jinmeng Yang
- School of Life Sciences, Central South University, Changsha 410013, China.
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ziping He
- School of Life Sciences, Central South University, Changsha 410013, China.
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Xinfa Liu
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
8
|
Deng R, Bai Y, Liu Y, Lu Y, Zhao Z, Deng Y, Yang H. DNAzyme-activated CRISPR/Cas assay for sensitive and one-pot detection of lead contamination. Chem Commun (Camb) 2024; 60:5976-5979. [PMID: 38769822 DOI: 10.1039/d4cc01852d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Hazardous lead ions (Pb2+) even at a minute level can pose side effects on human health, highlighting the need for tools for trace Pb2+ detection. Herein, we present a DNAzyme-activated CRISPR assay (termed DzCas12T) for sensitive and one-pot detection of lead contamination. Using an extension-bridged strategy eliminates the need for separation to couple the DNAzyme recognition and CRISPR reporting processes. The tandem design endowed the DzCas12T assay with high specificity and sensitivity down to the pM-level. This assay has been used to detect lead contamination in food and water samples, indicating the potential for monitoring lead-associated environmental and food safety.
Collapse
Affiliation(s)
- Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yaxuan Bai
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yumei Liu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yunhao Lu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Zhifeng Zhao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Hao Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Li Y, Tang X, Deng R, Feng L, Xie S, Chen M, Zheng J, Chang K. Dumbbell Dual-Hairpin Triggered DNA Nanonet Assembly for Cascade-Amplified Sensing of Exosomal MicroRNA. ACS OMEGA 2024; 9:19723-19731. [PMID: 38708273 PMCID: PMC11064005 DOI: 10.1021/acsomega.4c02652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Exosomal microRNAs (miRNAs) are valuable biomarkers closely associated with cancer progression. Therefore, sensitive and specific exosomal miRNA biosensing has been employed for cancer diagnosis, prognosis, and prediction. In this study, a miRNA-based DNA nanonet assembly strategy is proposed, enabling the biosensing of exosomal miRNAs through dumbbell dual-hairpin under isothermal enzyme-free conditions. This strategy dexterously designs a specific dumbbell dual-hairpin that can selectively recognize exosomal miRNA, inducing conformational changes to cascade-generated X-shaped DNA structures, facilitating the extension of the X-shaped DNA in three-dimensional space, ultimately forming a DNA nanonet assembly. On the basis of the target miRNA, our design enriches the fluorescence signal through the cascade assembly of DNA nanonet and realizes the secondary signal amplification. Using exosomal miR-141 as the target, the resultant fluorescence sensing demonstrates an impressive detection limit of 57.6 pM and could identify miRNA sequences with single-base variants with high specificity. Through the analysis of plasma and urine samples, this method effectively distinguishes between benign prostatic hyperplasia, prostate cancer, and metastatic prostate cancer. Serving as a novel noninvasive and accurate screening and diagnostic tool for prostate cancer, this dumbbell dual-hairpin triggered DNA nanonet assembly strategy is promising for clinical applications.
Collapse
Affiliation(s)
- Yongxing Li
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba
District, Chongqing 400038, P. R. China
- Department
of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), 183 Xinqiao, Shapingba
District, Chongqing 400037, P. R. China
- School
of Medicine, Chongqing University, Chongqing 400030, P. R. China
| | - Xiaoqi Tang
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba
District, Chongqing 400038, P. R. China
| | - Ruijia Deng
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba
District, Chongqing 400038, P. R. China
| | - Liu Feng
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba
District, Chongqing 400038, P. R. China
| | - Shuang Xie
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba
District, Chongqing 400038, P. R. China
| | - Ming Chen
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba
District, Chongqing 400038, P. R. China
| | - Ji Zheng
- Department
of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), 183 Xinqiao, Shapingba
District, Chongqing 400037, P. R. China
- School
of Medicine, Chongqing University, Chongqing 400030, P. R. China
| | - Kai Chang
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba
District, Chongqing 400038, P. R. China
| |
Collapse
|
10
|
Son J, Kim SH, Cha BS, Lee ES, Kim S, Park KS. Primer exchange reaction-coupled transcription isothermal amplification as a sensitive biomolecular assay. Chem Commun (Camb) 2024; 60:4565-4568. [PMID: 38572617 DOI: 10.1039/d4cc00665h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
We devised a novel strategy that relies on a combination of the primer exchange reaction (PER) with transcription isothermal amplification, termed PER-Trap, for a sensitive biomolecular assay. Its design allowed light-up RNA aptamers to be produced as the final product, leading to the generation of an amplified fluorescence signal. The utility of PER-Trap was successfully demonstrated by the detection of exosomes.
Collapse
Affiliation(s)
- Jinseo Son
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| | - Seok Hyeon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| | - Byung Seok Cha
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| | - Eun Sung Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| | - Seokjoon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Zhang Q, Hu J, Li DL, Qiu JG, Jiang BH, Zhang CY. Construction of single-molecule counting-based biosensors for DNA-modifying enzymes: A review. Anal Chim Acta 2024; 1298:342395. [PMID: 38462345 DOI: 10.1016/j.aca.2024.342395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
DNA-modifying enzymes act as critical regulators in a wide range of genetic functions (e.g., DNA damage & repair, DNA replication), and their aberrant expression may interfere with regular genetic functions and induce various malignant diseases including cancers. DNA-modifying enzymes have emerged as the potential biomarkers in early diagnosis of diseases and new therapeutic targets in genomic research. Consequently, the development of highly specific and sensitive biosensors for the detection of DNA-modifying enzymes is of great importance for basic biomedical research, disease diagnosis, and drug discovery. Single-molecule fluorescence detection has been widely implemented in the field of molecular diagnosis due to its simplicity, high sensitivity, visualization capability, and low sample consumption. In this paper, we summarize the recent advances in single-molecule counting-based biosensors for DNA-modifying enzyme (i.e, alkaline phosphatase, DNA methyltransferase, DNA glycosylase, flap endonuclease 1, and telomerase) assays in the past four years (2019 - 2023). We highlight the principles and applications of these biosensors, and give new insight into the future challenges and perspectives in the development of single-molecule counting-based biosensors.
Collapse
Affiliation(s)
- Qian Zhang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Dong-Ling Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jian-Ge Qiu
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Bing-Hua Jiang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
12
|
Wang ZY, Teng SQ, Zhao NN, Han Y, Li DL, Zhang CY. Ligase detection reaction amplification-activated CRISPR-Cas12a for single-molecule counting of FEN1 in breast cancer tissues. Chem Commun (Camb) 2024; 60:3075-3078. [PMID: 38404229 DOI: 10.1039/d4cc00408f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
We construct a simple fluorescent biosensor for single-molecule counting of flap endonuclease 1 (FEN1) based on ligase detection reaction (LDR) amplification-activated CRISPR-Cas12a. This biosensor exhibits excellent selectivity and high sensitivity with a detection limit (LOD) of 1.31 × 10-8 U. Moreover, it can be employed to screen the FEN1 inhibitors and quantitatively measure the FEN1 activity in human cells and breast cancer tissues, holding great promise in clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Zi-Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Shuang-Qian Teng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yun Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Dong-Ling Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
13
|
Zhang Q, Gao X, Ho YP, Liu M, Han Y, Li DL, Yuan HM, Zhang CY. Controllable Assembly of a Quantum Dot-Based Aptasensor Guided by CRISPR/Cas12a for Direct Measurement of Circulating Tumor Cells in Human Blood. NANO LETTERS 2024; 24:2360-2368. [PMID: 38347661 DOI: 10.1021/acs.nanolett.3c04828] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Accurate and sensitive analysis of circulating tumor cells (CTCs) in human blood provides a non-invasive approach for the evaluation of cancer metastasis and early cancer diagnosis. Herein, we demonstrate the controllable assembly of a quantum dot (QD)-based aptasensor guided by CRISPR/Cas12a for direct measurement of CTCs in human blood. We introduce a magnetic bead@activator/recognizer duplex core-shell structure to construct a multifunctional platform for the capture and direct detection of CTCs in human blood, without the need for additional CTC release and re-identification steps. Notably, the introduction of magnetic separation ensures that only a target-induced free activator can initiate the downstream catalysis, efficiently avoiding the undesired catalysis triggered by inappropriate recognition of the activator/recognizer duplex structure by crRNAs. This aptasensor achieves high CTC-capture efficiency (82.72%) and sensitive detection of CTCs with a limit of detection of 2 cells mL-1 in human blood, holding great promise for the liquid biopsy of cancers.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xin Gao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yun Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Dong-Ling Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hui-Min Yuan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
14
|
Chang Z, Jia M, Liu G, Yang H, Wang Y, Ouyang M, Gao X, Tang B. Dual-targets fluorescent nanoprobe for precise subtyping of lung cancer. Chem Commun (Camb) 2024; 60:2078-2081. [PMID: 38293810 DOI: 10.1039/d3cc05740b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
A Au-Se bond-based nanoprobe using 3',3-diselenopropionic acid to simultaneously link response chains for Pro-GRP protein and Cyfra21-1 was developed. Early diagnosis and subtyping of lung cancer can be achieved based on the nanoprobes' differential response of the probes to the two targets in lung cancer patients' serum.
Collapse
Affiliation(s)
- Zixuan Chang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Ming Jia
- Department of Cancer Center, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, P. R. China
| | - Gao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Houbang Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yinian Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Mingyi Ouyang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
- Laoshan Laboratory, 168 Wenhai Middle Rd, Aoshanwei Jimo, Qingdao 266237, P. R. China
| |
Collapse
|
15
|
Zhao X, Na N, Ouyang J. Functionalized DNA nanoplatform for multi-target simultaneous imaging: Establish the atlas of cancer cell species. Talanta 2024; 267:125222. [PMID: 37778181 DOI: 10.1016/j.talanta.2023.125222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
Detection and imaging of cell membrane receptor proteins have gained widespread interest in recent years. However, recognition based on a single biomarker can induce false positive feedback, including off-target phenomenon caused by the absence of tumor-specific antigens. In addition, nucleic acid probes often cause nonspecific and undesired cell internalization during cell imaging. In this work, we constructed a logic gate DNA nano-platform (LGDP) for single-molecule imaging of cell membrane proteins to synergistically diagnose cancer cells. The traffic light-like color response of LGDP facilitates the precise discrimination among different cell lines. Combined with single molecule technology, the target proteins were qualitatively and quantitatively analyzed synergistically. Logic-gated recognition integrated in aptamer-functionalized molecular machines will prompt fast cells analysis, laying the foundation of cancer early diagnosis and treatment.
Collapse
Affiliation(s)
- Xuan Zhao
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Na Na
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jin Ouyang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China; Department of Chemistry, College of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai City, 519087, Guangdong Province, China.
| |
Collapse
|
16
|
Sadeghi MS, Lotfi M, Soltani N, Farmani E, Fernandez JHO, Akhlaghitehrani S, Mohammed SH, Yasamineh S, Kalajahi HG, Gholizadeh O. Recent advances on high-efficiency of microRNAs in different types of lung cancer: a comprehensive review. Cancer Cell Int 2023; 23:284. [PMID: 37986065 PMCID: PMC10661689 DOI: 10.1186/s12935-023-03133-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
Carcinoma of the lung is among the most common types of cancer globally. Concerning its histology, it is categorized as a non-small cell carcinoma (NSCLC) and a small cell cancer (SCLC) subtype. MicroRNAs (miRNAs) are a member of non-coding RNA whose nucleotides range from 19 to 25. They are known to be critical regulators of cancer via epigenetic control of oncogenes expression and by regulating tumor suppressor genes. miRNAs have an essential function in a tumorous microenvironment via modulating cancer cell growth, metastasis, angiogenesis, metabolism, and apoptosis. Moreover, a wide range of information produced via several investigations indicates their tumor-suppressing, oncogenic, diagnostic assessment, and predictive marker functions in different types of lung malignancy. miRNA mimics or anti-miRNAs can be transferred into a lung cancer cell, with possible curative implications. As a result, miRNAs hold promise as targets for lung cancer treatment and detection. In this study, we investigate the different functions of various miRNAs in different types of lung malignancy, which have been achieved in recent years that show the lung cancer-associated regulation of miRNAs expression, concerning their function in lung cancer beginning, development, and resistance to chemotherapy, also the probability to utilize miRNAs as predictive biomarkers for therapy reaction.
Collapse
Affiliation(s)
- Mohammad Saleh Sadeghi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Lotfi
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Narges Soltani
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Liu X, Li B, Liu Q, Zhang L, Zhao R, Wu D, Wang L, Wang Z, Xie G, Feng W. Multifunctional dumbbell probes-based logic circuits: microRNAs logic detection and tumor cells identification. Anal Chim Acta 2023; 1280:341856. [PMID: 37858550 DOI: 10.1016/j.aca.2023.341856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND The powerful logic processing capability of DNA logic circuits over multiple input signals perfectly meets the demands of multi-biomarker-based clinical diagnostics. As important biomarkers for cancer diagnosis and treatment, the orthogonal differential expression of microRNAs (miRNAs) in different diseases and different cancer cells makes the precise logical detection of multiple miRNAs particularly critical. RESULTS Therefore, we constructed two fundamental "AND" and "OR" logic gates and one "AND-OR" logic gate on the basis of our proposed multifunctional dumbbell probes. These logic gates allowed for the logical profiling of multiple cancer-associated miRNAs. In addition, by making simple adjustments to the functional modules of multifunctional dumbbell probes, the three logic gates we proposed could be easily transformed without the use of sophisticated probe design. Remarkably, these logic gates, in particular the "AND-OR" logic gate, were able to compute several miRNAs simultaneously, demonstrating excellent cell identification capabilities. SIGNIFICANCE Overall, this work provided a new idea for accurately distinguishing multiple cell types and showed great application prospects.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, PR China
| | - Baiying Li
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, PR China
| | - Qian Liu
- Department of Nuclear Medicine, The Second Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Li Zhang
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, PR China
| | - Rong Zhao
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, PR China
| | - Di Wu
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, PR China
| | - Luojia Wang
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, PR China
| | - Zhongzhong Wang
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, PR China
| | - Guoming Xie
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, PR China.
| | - Wenli Feng
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, PR China.
| |
Collapse
|
18
|
Yuan W, Xiao K, Liu X, Lai Y, Luo F, Xiao W, Wu J, Pan P, Li Y, Xiao H. A programmable DNA nanodevice for colorimetric detection of DNA methyltransferase activity using functionalized hemin/G-quadruplex DNAzyme. Anal Chim Acta 2023; 1273:341559. [PMID: 37423656 DOI: 10.1016/j.aca.2023.341559] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023]
Abstract
The measurement of DNA methyltransferase (MTase) activity and screening of DNA MTase inhibitors holds significant importance for the diagnosis and therapy of methylation-related illness. Herein, we developed a colorimetric biosensor (PER-FHGD nanodevice) to detect DNA MTase activity by integrating the primer exchange reaction (PER) amplification and functionalized hemin/G-quadruplex DNAzyme (FHGD). By replacing the native hemin cofactor into the functionalized cofactor mimics, FHGD has exhibited significantly improved catalytic efficiency, thereby enhancing the detection performance of the FHGD-based system. The proposed PER-FHGD system is capable of detecting Dam MTase with excellent sensitivity, exhibiting a limit of detection (LOD) as low as 0.3 U/mL. Additionally, this assay demonstrates remarkable selectivity and ability for Dam MTase inhibitors screening. Furthermore, using this assay, we successfully detect the Dam MTase activity both in serum and in E. coli cell extracts. Importantly, this system has the potential to serve as a universal strategy for FHGD-based diagnosis in point-of-care (POC) tests, by simply altering the recognition sequence of the substrate for other analytes.
Collapse
Affiliation(s)
- Wenxu Yuan
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, The First Affiliated Hospital of Jinan University, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, PR China
| | - Kaiting Xiao
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, The First Affiliated Hospital of Jinan University, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, PR China
| | - Xingxing Liu
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, The First Affiliated Hospital of Jinan University, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, PR China
| | - Yanming Lai
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, The First Affiliated Hospital of Jinan University, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, PR China
| | - Fazeng Luo
- Foshan Institute of Medical Microbiology, Foshan, Guangdong, 528315, PR China
| | - Wei Xiao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, 510317, PR China
| | - Jinjun Wu
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Pan Pan
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, The First Affiliated Hospital of Jinan University, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, PR China.
| | - Yongkui Li
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, The First Affiliated Hospital of Jinan University, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, PR China.
| | - Heng Xiao
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, The First Affiliated Hospital of Jinan University, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, PR China.
| |
Collapse
|
19
|
Zhang Q, Zhang X, Zou X, Ma F, Zhang CY. CRISPR/Cas-Based MicroRNA Biosensors. Chemistry 2023; 29:e202203412. [PMID: 36477884 DOI: 10.1002/chem.202203412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
As important post-transcriptional regulators, microRNAs (miRNAs) play irreplaceable roles in diverse cellular functions. Dysregulated miRNA expression is implicated in various diseases including cancers, and thus miRNAs have become the valuable biomarkers for disease monitoring. Recently, clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system has shown great promise for the development of next-generation biosensors because of its precise localization capability, good fidelity, and high cleavage activity. Herein, we review recent advance in development of CRISPR/Cas-based biosensors for miRNA detection. We summarize the principles, features, and performance of these miRNA biosensors, and further highlight the remaining challenges and future directions.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
| | - Xinyi Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University Institution, Nanjing, 211189, P.R. China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
| |
Collapse
|
20
|
Qin K, Zhang P, Li Z. Specific detection of antibiotic-resistant bacteria using CRISPR/Cas9 induced isothermal exponential amplification reaction (IEXPAR). Talanta 2023. [DOI: 10.1016/j.talanta.2022.124045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Zhang X, Yu F, Wang Z, Jiang T, Song X, Yu F. Fluorescence probes for lung carcinoma diagnosis and clinical application. SENSORS & DIAGNOSTICS 2023; 2:1077-1096. [DOI: 10.1039/d3sd00029j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
This review provides an overview of the most recent developments in fluorescence probe technology for the accurate detection and clinical therapy of lung carcinoma.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Department of Pulmonary and Critical Care Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Feifei Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Zhenkai Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Xinyu Song
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medicine University, Guangzhou 510120, China
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
22
|
Ultrasensitive detection of pathogenic bacteria by primer exchange reaction coupled with PGM. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Zhao Q, Pan B, Long W, Pan Y, Zhou D, Luan X, He B, Wang Y, Song Y. Metal Organic Framework-Based Bio-Barcode CRISPR/Cas12a Assay for Ultrasensitive Detection of MicroRNAs. NANO LETTERS 2022; 22:9714-9722. [PMID: 36412588 DOI: 10.1021/acs.nanolett.2c04022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
CRISPR/Cas12a has shown great potential in molecular diagnostics, but its application in sensing of microRNAs (miRNAs) was limited by sensitivity and complexity. Here, we have sensitively and conveniently detected microRNAs by reasonably integrating metal-organic frameworks (MOFs) based biobarcodes with CRISPR/Cas12a assay (designated as MBCA). In this work, DNA-functionalized Zr-MOFs were designed as the converter to convert and amplify each miRNA target into activators that can initiate the trans-cleavage activity of CRISPR/Cas12a to further amplify the signal. Such integration provides a universal strategy for sensitive detection of miRNAs. By tuning the complementary sequences modified on nanoprobes, this assay achieves subattomolar sensitivity for different miRNAs and was selective to single-based mismatches. With the proposed method, the expression of miR-21 in different cancer cells can be assessed, and breast cancer patients and healthy individuals can be differentiated by analyzing the target miRNAs extracted from serum samples, holding great potential in clinical diagnosis.
Collapse
Affiliation(s)
- Qiao Zhao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210093 Nanjing, China
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 211816 Nanjing, China
| | - Bei Pan
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Wenxiu Long
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 211816 Nanjing, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210093 Nanjing, China
| | - Dongtao Zhou
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210093 Nanjing, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210093 Nanjing, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 211816 Nanjing, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210093 Nanjing, China
| |
Collapse
|
24
|
Bipedal DNAzyme walker triggered dual-amplification electrochemical platform for ultrasensitive ratiometric biosensing of microRNA-21. Biosens Bioelectron 2022; 220:114879. [DOI: 10.1016/j.bios.2022.114879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
25
|
An Y, Jiang D, Zhang N, Jiang W. Cascade primer exchange reaction-based amplification strategy for sensitive and portable detection of amyloid β oligomer using personal glucose meters. Anal Chim Acta 2022; 1232:340440. [DOI: 10.1016/j.aca.2022.340440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
|
26
|
Wang N, Jiang Y, Nie K, Li D, Liu H, Wang J, Huang C, Li C. Toehold-mediated strand displacement reaction-propelled cascade DNAzyme amplifier for microRNA let-7a detection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|