1
|
Tan J, Wang C, Hu Z, Zhang X. Wash-free fluorescent tools based on organic molecules: Design principles and biomedical applications. EXPLORATION (BEIJING, CHINA) 2025; 5:20230094. [PMID: 40040824 PMCID: PMC11875451 DOI: 10.1002/exp.20230094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/28/2024] [Indexed: 01/05/2025]
Abstract
Fluorescence-assisted tools based on organic molecules have been extensively applied to interrogate complex biological processes in a non-invasive manner with good sensitivity, high resolution, and rich contrast. However, the signal-to-noise ratio is an essential factor to be reckoned with during collecting images for high fidelity. In view of this, the wash-free strategy is proven as a promising and important approach to improve the signal-to-noise ratio, thus a thorough introduction is presented in the current review about wash-free fluorescent tools based on organic molecules. Firstly, generalization and summarization of the principles for designing wash-free molecular fluorescent tools (WFTs) are made. Subsequently, to make the thought of molecule design more legible, a wash-free strategy is highlighted in recent studies from four diverse but tightly binding aspects: (1) special chemical structures, (2) molecular interactions, (3) bio-orthogonal reactions, (4) abiotic reactions. Meanwhile, biomedical applications including bioimaging, biodetection, and therapy, are ready to be accompanied by. Finally, the prospects for WFTs are elaborated and discussed. This review is a timely conclusion about wash-free strategy in the fluorescence-guided biomedical applications, which may bring WFTs to the forefront and accelerate their extensive applications in biology and medicine.
Collapse
Affiliation(s)
- Jingyun Tan
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Chunfei Wang
- Faculty of Health SciencesUniversity of MacauMacauChina
- Department of PharmacologySchool of PharmacyWannan Medical CollegeWuhuChina
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology (IFM)Linköping UniversityLinköpingSweden
| | - Xuanjun Zhang
- Faculty of Health SciencesUniversity of MacauMacauChina
- MOE Frontiers Science Centre for Precision OncologyUniversity of MacauMacauChina
| |
Collapse
|
2
|
Ji S, Pan T, Wang K, Zai W, Jia R, Wang N, Jia S, Ding D, Shi Y. A Membrane-Anchoring Self-Assembling Peptide Allows Bioorthogonal Coupling of Type-I AIEgens for Pyroptosis-Induced Cancer Therapy. Angew Chem Int Ed Engl 2025; 64:e202415735. [PMID: 39223092 DOI: 10.1002/anie.202415735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Enrichment of photosensitizers (PSs) on cancer cell membranes via bioorthogonal reactions is considered to be a very promising therapeutic modality. However, azide-modified sugars-based metabolic labeling processes usually lack targeting and the labeling speed is relatively slow. Moreover, it has been rarely reported that membrane-anchoring pure type-I PSs can induce cancer cell pyroptosis. Here, we report an alkaline phosphatase (ALP) and cholecystokinin-2 receptor (CCK2R) dual-targeting peptide named DBCO-pYCCK6, which can selectively and rapidly self-assemble on cancer cell membrane, and then bioorthogonal enrich type-I aggregation-induced emission luminogens (AIEgen) PSs (SAIE-N3) on the cell membrane. Upon light irradiation, the membrane-anchoring SAIE-N3 could effectively generate type-I reactive oxygen species (ROS) to induce gasdermin E (GSDME)-mediated pyroptosis. In vivo experiments demonstrated that the bioorthogonal combination strategy of peptide and AIEgen PSs could significantly inhibit tumor growth, which is accompanied by CD8+ cytotoxic T cell infiltration. This work provides a novel self-assembly peptide-mediated bioorthogonal reaction strategy to bridge the supramolecular self-assembly and AIE field through strain-promoted azide-alkyne cycloaddition (SPAAC) and elucidates that pure type-I membrane-anchoring PSs can be used for cancer therapy via GSDME-mediated pyroptosis.
Collapse
Affiliation(s)
- Shenglu Ji
- The Key Laboratory of Biomedical Materials, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tengwu Pan
- Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Kaiyuan Wang
- The Key Laboratory of Biomedical Materials, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Weiqi Zai
- The Key Laboratory of Biomedical Materials, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ruikang Jia
- Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Nannan Wang
- The Key Laboratory of Biomedical Materials, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Shaorui Jia
- Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dan Ding
- The Key Laboratory of Biomedical Materials, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yang Shi
- Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Di Z, Shuhe Z, Baoding S, Yihan Z, Guangming J. Preparation of transferrin-modified IR820-loaded liposomes and its effect on photodynamic therapy of breast cancer. Discov Oncol 2024; 15:611. [PMID: 39487890 PMCID: PMC11531457 DOI: 10.1007/s12672-024-01486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
OBJECTIVE To prepare and characterize transferrin (Tf)-modified liposomes (Lipo) encapsulating the photosensitizing agent neoindocyanine green (IR820), and to investigate their effects on breast cancer 4T1 cells as well as in a breast cancer mouse model. METHODS Photosensitive liposomes, IR820@Lipo and Tf-IR820@Lipo, were synthesized using thin film dispersion, with encapsulation efficiency assessed via UV detection. The physicochemical properties were analyzed using transmission electron microscopy (TEM) and particle size analysis. Uptake by breast cancer 4T1 cells was evaluated through confocal laser scanning microscopy and flow cytometry, while cell proliferation inhibition was measured using the CCK8 assay. Differences in intracellular fluorescence intensity were utilized to assess drug aggregation in vivo through small animal imaging techniques. The anticancer efficacy and potential side effects of the formulations were examined through pharmacodynamic studies conducted in vivo. RESULTS The mean particle sizes of IR820@Lipo and Tf-IR820@Lipo were found to be 84.30 ± 15.66 nm and 116.20 ± 14.68 nm respectively, with zeta potentials of -8.21 ± 2.06 mV for IR820@Lipo and -5.23 ± 1.19 mV for Tf-IR820@Lipo; TEM revealed that the liposomes exhibited a spheroid morphology with uniform distribution across samples; encapsulation efficiencies reached 86.38 ± 0.99% for IR820@Lipo and an impressive 93.81 ± 1.06% for Tf-IR820@Lipo; notably, Tf-IR820@Lipo significantly inhibited proliferation while promoting apoptosis of the 4T1 cells upon laser irradiation; reactive oxygen species (ROS) detection indicated enhanced fluorescence intensity within the treated cells under light exposure when utilizing both formulations; in vivo experiments demonstrated tumor accumulation of both IR820@Lipo and Tf-IR820@Lipo, indicating effective tumor targeting within a breast cancer mouse model; pharmacodynamic assessments revealed that Tf-IR820@Lipo exhibited superior inhibitory effects against breast cancer without causing liver or kidney dysfunctions in mice nor presenting significant toxic side effects overall. CONCLUSION Given its high targeting capability, potent efficacy, and low toxicity profile, Tf-IR820@Lipo holds promise as a novel therapeutic agent for breast cancer treatment when combined with photodynamic therapy (PDT), potentially offering new avenues for patient management.
Collapse
Affiliation(s)
- Zhang Di
- Department of Ultrasound, Yanbian University Hospital, No. 1327, Juzi Street, Yanji City, 133000, Jilin Province, China
| | - Zhang Shuhe
- Department of Ultrasound, Yanbian University Hospital, No. 1327, Juzi Street, Yanji City, 133000, Jilin Province, China
| | - Shan Baoding
- Department of Ultrasound, Yanbian University Hospital, No. 1327, Juzi Street, Yanji City, 133000, Jilin Province, China
| | - Zhao Yihan
- Department of Ultrasound, Yanbian University Hospital, No. 1327, Juzi Street, Yanji City, 133000, Jilin Province, China
| | - Jin Guangming
- Department of Ultrasound, Yanbian University Hospital, No. 1327, Juzi Street, Yanji City, 133000, Jilin Province, China.
| |
Collapse
|
4
|
Li Z, Xie Y, Liu H, Wang J, Wang G, Wang H, Su X, Lei M, Wan Q, Zhou Y, Teng M. Molecular engineering to design a bright near-infrared red photosensitizer: cellular bioimaging and phototherapy. RSC Adv 2024; 14:13801-13807. [PMID: 38681838 PMCID: PMC11046288 DOI: 10.1039/d4ra00928b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Near-infrared red (NIR) fluorescence imaging guide phototherapeutic therapy (PDT) has the advantages of deep tissue penetration, real-time monitoring of drug treatment and disease, little damage to normal tissue, low cytotoxicity and almost no side effects, and thus, it is attracting increasing research attention and is expected to show promising potential for clinical tumor treatment. The photosensitizer (PS), light source and oxygen are the three basic and important factors to construct PDT technology, and highly efficient PSs are still being passionately pursued because they determine the PDT efficiency. Ideal PSs should have properties such as good biocompatibility, deep tissue penetration, and highly efficient reactive oxygen species (ROS) generation despite the hypoxic environment. Therefore, pure organic type I PSs with NIR fluorescence have been receiving increasing attention due to their deep penetration and hypoxia resistance. However, reported NIR-active type I PSs usually require complex synthetic procedures, which presents a challenge for mass production. In this research work, based on the molecular design ideas of introducing the heavy atom effect and intramolecular charge transfer, we prepared three NIR-active type I PSs (TNZ, TNZBr, and TNZCHO) using a very simple method with one or two synthetic steps. Clear characterizations of photophysical properties, ROS performance tests, and fluorescent imaging of human umbilical vein endothelial (HUVE) cells and PDT treatment of HepG2 cells were carried out. The results revealed that the heavy atom and intramolecular charge transfer (ICT) effects could obviously enhance the ROS efficiency, and both PSs produce only type I ROS without any type II ROS (1O2) generation. The good NIR fluorescence brightness and type I ROS efficiency ensure satisfactory bioimaging and PDT outcomes. This research provides the possibility of preparing NIR-active type I PSs via mass production.
Collapse
Affiliation(s)
- Zhiyong Li
- Vascular Surgery Department, The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Yili Xie
- College of Ecology and Environment, Yuzhang Normal University Nanchang 330103 China
| | - Heng Liu
- The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Jing Wang
- Healthy Examination & Management Center, The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Gang Wang
- The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Hengxin Wang
- The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Xuejie Su
- The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Meixu Lei
- The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Qing Wan
- School of Materials Science and Engineering, Nanchang Hangkong University Nanchang 330063 China
| | - Yali Zhou
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| | - Muzhou Teng
- The Second Hospital & Clinical Medical School, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
5
|
Sun L, Zou M, Du L, Wang S, Ding R, Lu K, Li J, Zhou J. A mitochondria-targeted far-red AIE fluorescent probe for distinguishing between mitophagy and ferroptosis in cancer cells. Chem Commun (Camb) 2023; 59:12735-12738. [PMID: 37800994 DOI: 10.1039/d3cc03923d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
A mitochondria-targeted far-red fluorescent probe LY-1 with AIE character was formulated to track cell viscosity alterations with excellent sensitivity and selectivity, which was used to discriminate between mitophagy and ferroptosis in cancer cells. Probe LY-1 is expected to be an effective vehicle for the diagnosis of mitochondrial viscosity relevant diseases.
Collapse
Affiliation(s)
- Liyuan Sun
- School of Pharmacy, School of Anesthesiology, School of Nursing, Weifang Medical University, Weifang, 261053, China.
| | - Mengfei Zou
- School of Pharmacy, School of Anesthesiology, School of Nursing, Weifang Medical University, Weifang, 261053, China.
- Weifang People's Hospital, Weifang, 261041, China
| | - Longjie Du
- School of Pharmacy, School of Anesthesiology, School of Nursing, Weifang Medical University, Weifang, 261053, China.
| | - Shugang Wang
- Department of Rheumatology, Weifang Hospital of Traditional Chinese Medicine, Weifang, 261000, China
| | - Ru Ding
- School of Pharmacy, School of Anesthesiology, School of Nursing, Weifang Medical University, Weifang, 261053, China.
| | - Keliang Lu
- School of Pharmacy, School of Anesthesiology, School of Nursing, Weifang Medical University, Weifang, 261053, China.
| | - Jianchun Li
- School of Pharmacy, School of Anesthesiology, School of Nursing, Weifang Medical University, Weifang, 261053, China.
| | - Jin Zhou
- School of Pharmacy, School of Anesthesiology, School of Nursing, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
6
|
Lu B, Wang L, Tang H, Cao D. Recent advances in type I organic photosensitizers for efficient photodynamic therapy for overcoming tumor hypoxia. J Mater Chem B 2023; 11:4600-4618. [PMID: 37183673 DOI: 10.1039/d3tb00545c] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Photodynamic therapy (PDT) with an oxygen-dependent character is a noninvasive therapeutic method for cancer treatment. However, its clinical therapeutic effect is greatly restricted by tumor hypoxia. What's more, both PDT-mediated oxygen consumption and microvascular damage aggravate tumor hypoxia, thus, further impeding therapeutic outcomes. Compared to type II PDT with high oxygen dependence and high oxygen consumption, type I PDT with less oxygen consumption exhibits great potential to overcome the vicious hypoxic plight in solid tumors. Type I photosensitizers (PSs) are significantly important for determining the therapeutic efficacy of PDT, which performs an electron transfer photochemical reaction with the surrounding oxygen/substrates to generate highly cytotoxic free radicals such as superoxide radicals (˙O2-) as type I ROS. In particular, the primary precursor (˙O2-) would progressively undergo a superoxide dismutase (SOD)-mediated disproportionation reaction and a Haber-Weiss/Fenton reaction, yielding higher cytotoxic species (˙OH) with better anticancer effects. As a result, developing high-performance type I PSs to treat hypoxic tumors has become more and more important and urgent. Herein, the latest progress of organic type I PSs (such as AIE-active cationic/neutral PSs, cationic/neutral PSs, polymer-based PSs and supramolecular self-assembled PSs) for monotherapy or synergistic therapeutic modalities is summarized. The molecular design principles and strategies (donor-acceptor system, anion-π+ incorporation, polymerization and cationization) are highlighted. Furthermore, the future challenges and prospects of type I PSs in hypoxia-overcoming PDT are proposed.
Collapse
Affiliation(s)
- Bingli Lu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| |
Collapse
|
7
|
Zhong M, He J, Zhang B, Liu Q, Fang J. Mitochondria-targeted iridium-based photosensitizers enhancing photodynamic therapy effect by disturbing cellular redox balance. Free Radic Biol Med 2023; 195:121-131. [PMID: 36581057 DOI: 10.1016/j.freeradbiomed.2022.12.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 12/27/2022]
Abstract
Photodynamic therapy (PDT) is a non-invasive, light-activated treatment approach that has been broadly employed in cancer. Cyclometallic iridium (Ш) complexes are candidates for ideal photosensitizers due to their unique photophysical and photochemical features, such as high quantum yield, large Stokes shift, strong resistance to photobleaching, and high cellular permeability. We evaluated a panel of iridium complexes and identified PC9 as a powerful photosensitizer to kill cancer cells. PC9 shows an 8-fold increase of cytotoxicity to HeLa cells under light irradiation. Further investigation discloses that PC9 has a strong mitochondrial-targeting ability and can inhibit the antioxidant enzyme thioredoxin reductase, which contributes to improving PDT efficacy. Our data indicate that iridium complexes are efficient photosensitizers with distinct physicochemical properties and cellular actions, and deserve further development as promising agents for PDT.
Collapse
Affiliation(s)
- Miao Zhong
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jian He
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China; Sichuan Key Laboratory of Medical Imaging, School of Medical Imaging, North Sichuan Medical College, Nanchong, 637000, China
| | - Baoxin Zhang
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Qiang Liu
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Jianguo Fang
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China; School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
8
|
Wang J, Li J, Yu Z, Zhu X, Yu J, Wu Z, Wang S, Zhou H. Molecular Tailoring Based on Forster Resonance Energy Transfer for Initiating Two-Photon Theranostics with Amplified Reactive Oxygen Species. Anal Chem 2022; 94:14029-14037. [PMID: 36173258 DOI: 10.1021/acs.analchem.2c03408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fabrication of multifunctional photosensitizers (PSs) with abundant Type I/II ROS for efficient theranostics in the "therapeutic window" (700-900 nm) is an appealing yet significantly challenging task. We herein report a molecular tailoring strategy based on intramolecular two-photon Forster Resonance Energy Transfer (TP-FRET) to obtain a novel theranostic agent (Lyso-FRET), featuring the amplified advantage of energy donor (NH) and acceptor (COOH), because of the reuse of fluorescence energy with high efficiency of FRET (∼83%). Importantly, under the excitation by the near-infrared (840 nm) window, Lyso-FRET can not only penetrate the deeper tissue with a higher resolution for fluorescence imaging due to the nonlinear optical (NLO) nature, but also generate more Type I (superoxide anion) and Type II (singlet oxygen) reactive oxygen species for hypoxic PDT. Moreover, Lyso-FRET targeting lysosomes further promotes the effect of treatment. The experiments in vitro and in vivo also verify that the developed TP-FRET PS is conducive to treating deep hypoxic tumors. This strategy provides new and significant insights into the design and fabrication of advanced multifunctional PSs.
Collapse
Affiliation(s)
- Junjun Wang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| | - Jinsong Li
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| | - Zhipeng Yu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| | - Jianhua Yu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| | - Zhichao Wu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| | - Sen Wang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| |
Collapse
|
9
|
Ding G, Tong J, Duan Y, Wang S, Su Z, Shao K, Zhang L, Zhu D, Wen LL, Li Y, Shan GG. Boosting the photodynamic therapy of near-infrared AIE-active photosensitizers by precise manipulation of the molecular structure and aggregate-state packing. J Mater Chem B 2022; 10:5818-5825. [PMID: 35876122 DOI: 10.1039/d2tb01152b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Organic functional materials have emerged as a promising class of emissive materials with potential application in cancer phototheranostics, whose molecular structures and solid-state packing in the microenvironment play an important role in reactive oxygen species (ROS) generation and the photodynamic therapy (PDT) effect. Clarifying the guidelines to precisely modulate PDT performance from molecular and aggregate levels is desired but remains challenging. In this work, two compounds, TCP-PF6 and TTCP-PF6, with similar skeletons are strategically synthesized, in which a thiophene segment is ingeniously introduced into the molecular backbone of TCP-PF6 to adjust the intrinsic molecular characteristics and packing in the aggregate state. The experimental and theoretical results demonstrate that TTCP-PF6 can form tight packing mode in comparison with TCP-PF6, resulting in efficient cell imaging and enhanced ROS generation ability in vitro and in vivo. The promising features make TTCP-PF6 a superior photosensitizer for PDT treatment against cancer cells by targeting mitochondria. These findings can provide a feasible molecular design for modulating the biological activity and developing photosensitizers with high ROS generation and PDT effect.
Collapse
Affiliation(s)
- Guanyu Ding
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, P. R. China.,Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Jialin Tong
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Yingchen Duan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China.
| | - Shuang Wang
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Zhongmin Su
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China.
| | - Kuizhan Shao
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Lingyu Zhang
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Daoming Zhu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Li-Li Wen
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China.
| | - Yuanyuan Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Guo-Gang Shan
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| |
Collapse
|