1
|
Fonseca-López D, Lozano JD, Macías MA, Muñoz-Castro Á, MacLeod-Carey D, Nagles E, Hurtado J. Biological Activity of Complexes Involving Nitro-Containing Ligands and Crystallographic-Theoretical Description of 3,5-DNB Complexes. Int J Mol Sci 2024; 25:6536. [PMID: 38928242 PMCID: PMC11203423 DOI: 10.3390/ijms25126536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Drug resistance in infectious diseases developed by bacteria and fungi is an important issue since it is necessary to further develop novel compounds with biological activity that counteract this problem. In addition, new pharmaceutical compounds with lower secondary effects to treat cancer are needed. Coordination compounds appear to be accessible and promising alternatives aiming to overcome these problems. In this review, we summarize the recent literature on coordination compounds based on nitrobenzoic acid (NBA) as a ligand, its derivatives, and other nitro-containing ligands, which are widely employed owing to their versatility. Additionally, an analysis of crystallographic data is presented, unraveling the coordination preferences and the most effective crystallization methods to grow crystals of good quality. This underscores the significance of elucidating crystalline structures and utilizing computational calculations to deepen the comprehension of the electronic properties of coordination complexes.
Collapse
Affiliation(s)
- Daniela Fonseca-López
- Grupo de Investigación en Química Inorgánica, Catálisis y Bioinorgánica, Departamento de Química, Universidad de los Andes, Bogotá 111711, Colombia;
| | - Johan D. Lozano
- Crystallography and Chemistry of Materials, Departamento de Química, Universidad de los Andes, Bogotá 111711, Colombia; (J.D.L.); (M.A.M.)
| | - Mario A. Macías
- Crystallography and Chemistry of Materials, Departamento de Química, Universidad de los Andes, Bogotá 111711, Colombia; (J.D.L.); (M.A.M.)
| | - Álvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago 8420524, Chile;
| | - Desmond MacLeod-Carey
- Inorganic Chemistry and Molecular Materials Laboratory, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, Santiago 8910124, Chile;
| | - Edgar Nagles
- Facultad de Química e Ing. Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - John Hurtado
- Grupo de Investigación en Química Inorgánica, Catálisis y Bioinorgánica, Departamento de Química, Universidad de los Andes, Bogotá 111711, Colombia;
| |
Collapse
|
2
|
He Q, Zhang HR, Zou Y. A Cytochrome P450 Catalyzes Oxidative Coupling Formation of Insecticidal Dimeric Indole Piperazine Alkaloids. Angew Chem Int Ed Engl 2024; 63:e202404000. [PMID: 38527935 DOI: 10.1002/anie.202404000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Cytochrome P450 (CYP450)-catalyzed oxidative coupling is an efficient strategy for using simple building blocks to construct complex structural scaffolds of natural products. Among them, heterodimeric coupling between two different monomers is relatively scarce, and the corresponding CYP450s are largely undiscovered. In this study, we discovered a fungal CYP450 (CpsD) and its associated cps cluster from 37208 CYP450s of Pfam PF00067 family member database and subsequently identified a group of new skeleton indole piperazine alkaloids (campesines A-G) by combination of genome mining and heterologous synthesis. Importantly, CYP450 CpsD mainly catalyzes intermolecular oxidative heterocoupling of two different indole piperazine monomers to generate an unexpected 6/5/6/6/6/6/5/6 eight-ring scaffold through the formation of one C-C bond and two C-N bonds, illuminating its first dimerase role in this family of natural products. The proposed catalytic mechanism of CpsD was deeply investigated by diversified substrate derivatization. Moreover, dimeric campesine G shows good insecticidal activity against the global honeybee pest Galleria mellonella. Our study shows a representative example of discovering new skeleton monomeric and dimeric indole piperazine alkaloids from microbial resources, expands our knowledge of bond formation by CYP450s and supports further development of the newly discovered and engineered campesine family compounds as potential biopesticides.
Collapse
Affiliation(s)
- Qian He
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Hua-Ran Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
3
|
Wang R, Liang JJ, Yang W, Vuong D, Kalaitzis JA, Lacey AE, Lacey E, Piggott AM, Chooi YH, Li H. Heterologous Biosynthesis of the Sterol O-Acyltransferase Inhibitor Helvamide Unveils an α-Ketoglutarate-Dependent Cross-Linking Oxygenase. Org Lett 2024; 26:1807-1812. [PMID: 38393343 DOI: 10.1021/acs.orglett.3c04310] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
We have identified the biosynthetic gene cluster (hvm) for the sterol O-acyltransferase inhibitor helvamide (1) from the genome of Aspergillus rugulosus MST-FP2007. Heterologous expression of hvm in A. nidulans produced a previously unreported analog helvamide B (5). An α-ketoglutarate-dependent oxygenase Hvm1 was shown to catalyze intramolecular cyclization of 1 to yield 5. The biosynthetic branch to the related hancockiamides and helvamides was found to be controlled by the substrate selectivity of monomodular nonribosomal peptide synthetases.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jia-Jing Liang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Wencong Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Daniel Vuong
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | - John A Kalaitzis
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Alastair E Lacey
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | - Ernest Lacey
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | - Andrew M Piggott
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Hang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
4
|
Haroon F, Farwa U, Arif M, Raza MA, Sandhu ZA, El Oirdi M, Farhan M, Alhasawi MAI. Novel Para-Aminobenzoic Acid Analogs and Their Potential Therapeutic Applications. Biomedicines 2023; 11:2686. [PMID: 37893060 PMCID: PMC10604881 DOI: 10.3390/biomedicines11102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
A "building block" is a key component that plays a substantial and critical function in the pharmaceutical research and development industry. Given its structural versatility and ability to undergo substitutions at both the amino and carboxyl groups, para-aminobenzoic acid (PABA) is a commonly used building block in pharmaceuticals. Therefore, it is great for the development of a wide range of novel molecules with potential medical applications. Anticancer, anti-Alzheimer's, antibacterial, antiviral, antioxidant, and anti-inflammatory properties have been observed in PABA compounds, suggesting their potential as therapeutic agents in future clinical trials. PABA-based therapeutic chemicals as molecular targets and their usage in biological processes are the primary focus of this review study. PABA's unique features make it a strong candidate for inclusion in a massive chemical database of molecules having drug-like effects. Based on the current literature, further investigation is needed to evaluate the safety and efficacy of PABA derivatives in clinical investigations and better understand the specific mechanism of action revealed by these compounds.
Collapse
Affiliation(s)
- Faisal Haroon
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.E.O.); (M.F.)
| | - Umme Farwa
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Maimoona Arif
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Muhammad Asam Raza
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Zeshan Ali Sandhu
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Mohamed El Oirdi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.E.O.); (M.F.)
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.E.O.); (M.F.)
| | | |
Collapse
|
5
|
Minns SA, Bowles S, Lacey E, Kalaitzis JA, Vuong D, Butler MS, Piggott AM. Fuligopyrones from the Fruiting Bodies of Myxomycete Fuligo septica Offer Short-Term Protection from Abiotic Stress Induced by UV Radiation. JOURNAL OF NATURAL PRODUCTS 2023; 86:633-637. [PMID: 36655352 DOI: 10.1021/acs.jnatprod.2c00989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The myxomycete Fuligo septica, colloquially referred to as "dog vomit fungus", forms vibrant yellow fruiting bodies (aethalia) on wood chips during warm and humid conditions in spring. In 2018, ideal climatic conditions in Sydney, Australia, provided a rare opportunity to access abundant quantities of F. septica aethalia, which enabled the isolation, purification, structure elucidation, and biological screening of two avenalumamide pyrones, fuligopyrone (1) and fuligopyrone B (2). While 1 and 2 did not exhibit any appreciable biological activity, their significant UV absorption at 325 nm suggested they may be acting as transient sunscreens to help protect the fruiting mass from exposure to sunlight. In support of this hypothesis, exposing a solution of 2 to direct sunlight for 5 min resulted in rapid equilibration with a mixture of 2E,4Z-fuligopyrone B (10) and 2Z,4E-fuligopyrone B (11) photoisomers.
Collapse
Affiliation(s)
- Scott A Minns
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | - Simon Bowles
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | - Ernest Lacey
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - John A Kalaitzis
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Daniel Vuong
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | | | - Andrew M Piggott
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
6
|
Wang R, Piggott AM, Chooi YH, Li H. Discovery, bioactivity and biosynthesis of fungal piperazines. Nat Prod Rep 2023; 40:387-411. [PMID: 36374102 DOI: 10.1039/d2np00070a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Covering: up to the end of July, 2022Fungi are prolific producers of piperazine alkaloids, which have been shown to exhibit an array of remarkable biological activities. Since the first fungal piperazine, herquline A, was reported from Penicillium herquei Fg-372 in 1979, a plethora of structurally diverse piperazines have been isolated and characterised from various fungal strains. Significant advancements have been made in recent years towards unravelling the biosynthesis of fungal piperazines and numerous synthetic routes have been proposed. This review provides a comprehensive summary of the current knowledge of the discovery, classification, bioactivity and biosynthesis of piperazine alkaloids reported from fungi, and discusses the perspectives for exploring the structural diversity of fungal piperazines via genome mining of the untapped piperazine biosynthetic pathways.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China.
| | - Andrew M Piggott
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Hang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China.
| |
Collapse
|
7
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2022. [PMID: 35929527 DOI: 10.1039/d2np90026b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as hyperispirone A from Hypericum beanii.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, UK, G12 8QQ.
| | | |
Collapse
|