1
|
Song W, Shao X. Buckybowl-Based Fullerene Receptors. Chemistry 2025; 31:e202403383. [PMID: 39446344 DOI: 10.1002/chem.202403383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
Buckybowls, bowl-shaped polyaromatic hydrocarbons, have received intensive interest owing to their multifaceted potentials in supramolecular chemistry and materials science. Buckybowls possess unique chemical and physical properties associated with their concave and convex faces. In view of the shape complementarity, which is one of the key factors for host-guest assembly, buckybowls are ideal receptors for fullerenes. In fact, the host-guest assembly between buckybowls and fullerenes is one of the most active topics in buckybowls chemistry, and the resulting supramolecular materials show promising applications in optoelectronics, biomaterials, and so forth. In this tutorial review, we present an overview for the progress on fullerene receptors based on buckybowls over the last decade.
Collapse
Affiliation(s)
- Wenru Song
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Xiangfeng Shao
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| |
Collapse
|
2
|
Wu GY, Huang CL, Kang HW, Ou WT, Ho YS, Cheng MJ, Wu YT. exo-6b 2-Methyl-Substituted Pentabenzocorannulene: Synthesis, Structural Analysis, and Properties. Angew Chem Int Ed Engl 2024; 63:e202408321. [PMID: 38926096 DOI: 10.1002/anie.202408321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
exo-6b2-Methyl-substituted pentabenzocorannulene (exo-PBC-Me) was synthesized by the palladium-catalyzed cyclization of 1,2,3-triaryl-1H-cyclopenta[l]phenanthrene. Its bowl-shaped geometry with an sp3 carbon atom in the backbone and a methyl group located at the convex (exo) face was verified by X-ray crystallography. According to DFT calculations, the observed conformer is energetically more favorable than the endo one by 39.9 kcal/mol. Compared to the nitrogen-doped analogs with intact π-conjugated backbones (see the main text), exo-PBC-Me displayed a deeper bowl depth (avg. 1.93 Å), redshifted and broader absorption (250-620 nm) and emission (from 585 to more than 850 nm) bands and a smaller optical HOMO-LUMO gap (2.01 eV). exo-PBC-Me formed polar crystals where all bowl-in-bowl stacking with close π ⋅ ⋅ ⋅ π contacts is arranged unidirectionally, providing the potential for applications as organic semiconductors and pyroelectric materials. This unusual structural feature, molecular packing, and properties are most likely associated with the assistance of the methyl group and the sp3 carbon atom in the backbone.
Collapse
Affiliation(s)
- Guan-Yi Wu
- Department of Chemistry, National Cheng Kung University, No. 1 Ta-Hsueh Rd., 70101, Tainan, Taiwan
| | - Chun-Lin Huang
- Department of Chemistry, National Cheng Kung University, No. 1 Ta-Hsueh Rd., 70101, Tainan, Taiwan
| | - Hao-Wen Kang
- Department of Chemistry, National Cheng Kung University, No. 1 Ta-Hsueh Rd., 70101, Tainan, Taiwan
| | - Wei-Ting Ou
- Department of Chemistry, National Cheng Kung University, No. 1 Ta-Hsueh Rd., 70101, Tainan, Taiwan
| | - Yeu-Shiuan Ho
- Department of Chemistry, National Cheng Kung University, No. 1 Ta-Hsueh Rd., 70101, Tainan, Taiwan
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, No. 1 Ta-Hsueh Rd., 70101, Tainan, Taiwan
| | - Yao-Ting Wu
- Department of Chemistry, National Cheng Kung University, No. 1 Ta-Hsueh Rd., 70101, Tainan, Taiwan
| |
Collapse
|
3
|
Ibáñez S, Mejuto C, Cerón K, Sanz Miguel PJ, Peris E. A corannulene-based metallobox for the encapsulation of fullerenes. Chem Sci 2024; 15:13415-13420. [PMID: 39183911 PMCID: PMC11339943 DOI: 10.1039/d4sc03661a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024] Open
Abstract
A corannulene-bis-N-imidazolium salt was used for the synthesis of two corannulene-bis-N-heterocyclic carbenes of dirhodium(i) complexes of formula (corannulene-di-NHC)[RhCl(COD)]2 and (corannulene-di-NHC)[RhCl(CO)2]2. Both complexes were characterized by spectroscopic techniques, and the electron-donating properties of the corannulene-di-NHC ligand were studied by means of infrared spectroscopy and cyclic voltammetry. The complex (corannulene-di-NHC)[RhCl(COD)]2 was used for the encapsulation of fullerenes C60 and C70, generating host-guest complexes with 2 : 1 stoichiometry, as evidenced by 1H NMR and ITC titrations. Then, a tetra-rhodium(i) metallo-rectangle supported by two corannulene-bis-imidazolylidene ligands and two cofacial 4,4'-bipyridine ligands was prepared and characterized. This metallobox is capable of quantitatively encapsulating fullerenes C60 and C70, forming complexes that are highly stable even at high temperatures. The molecular structure of the metallobox with encapsulated C60 reveals a perfect size and shape complementarity that benefits from the concave-convex π-π interaction between the polyaromatic surfaces of the host and the guest.
Collapse
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I Av. Vicente Sos Baynat s/n Castellón E-12071 Spain
| | - Carmen Mejuto
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I Av. Vicente Sos Baynat s/n Castellón E-12071 Spain
| | - Katherin Cerón
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I Av. Vicente Sos Baynat s/n Castellón E-12071 Spain
| | - Pablo J Sanz Miguel
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I Av. Vicente Sos Baynat s/n Castellón E-12071 Spain
| |
Collapse
|
4
|
Polkaehn J, Thom R, Ehlers P, Villinger A, Langer P. π-Expanded azaullazines: synthesis of quinolino-azaullazines by Povarov reaction and cycloisomerisation. Org Biomol Chem 2024; 22:2027-2042. [PMID: 38353980 DOI: 10.1039/d4ob00091a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Doping and extension of polycyclic aromatic hydrocarbons (PAHs) by simple and efficient synthetic methods is of increased demand for the development of novel and improved organic electronics. Diarylindolizino[6,5,4,3-ija]quinolino[2,3-c][1,6]naphthyridines (quinolino-azaullazines) were prepared by combination of Pd catalyzed cross-coupling with Povarov and cycloisomerisation reactions. The products contain an electron-rich ullazine and an electron-poor quinoline moiety and show intramolecular charge transfer properties that can be tuned by the substitution pattern. The optical properties were studied experimentally and further elaborated by (TD)DFT calculations.
Collapse
Affiliation(s)
- Jonas Polkaehn
- Institute of Chemistry, University Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.
| | - Richard Thom
- Institute of Chemistry, University Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.
| | - Peter Ehlers
- Institute of Chemistry, University Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.
| | - Alexander Villinger
- Institute of Chemistry, University Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.
| | - Peter Langer
- Institute of Chemistry, University Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.
- Leibniz Institute for Catalysis (LIKAT) at the University Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|