1
|
Lu J, Hierons SJ, Arya S, Fritzen R, Polepalli S, Khazaipoul S, Stewart AJ, Blindauer CA. Properties of the major Zn 2+-binding site of human alpha-fetoprotein, a potential foetal plasma zinc carrier. Chem Commun (Camb) 2025; 61:2099-2102. [PMID: 39801276 PMCID: PMC11726181 DOI: 10.1039/d4cc06611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025]
Abstract
The foetal plasma protein α-fetoprotein (AFP) harbours a high-affinity zinc binding site that is likely involved in transport and delivery of essential zinc during foetal development. Based on a recent electron microscopy structure of AFP and aided by biophysical studies on an AFP-derived peptide, we present a refined 5-coordinate model for this site.
Collapse
Affiliation(s)
- Jin Lu
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Stephen J Hierons
- School of Medicine, University of St. Andrews, St. Andrews, KY16 9TF, UK.
| | - Swati Arya
- School of Medicine, University of St. Andrews, St. Andrews, KY16 9TF, UK.
| | - Remi Fritzen
- School of Medicine, University of St. Andrews, St. Andrews, KY16 9TF, UK.
| | | | - Siavash Khazaipoul
- School of Medicine, University of St. Andrews, St. Andrews, KY16 9TF, UK.
| | - Alan J Stewart
- School of Medicine, University of St. Andrews, St. Andrews, KY16 9TF, UK.
| | | |
Collapse
|
2
|
Ackermann K, Wu D, Stewart AJ, Bode BE. EPR spectroscopic characterisation of native Cu II-binding sites in human serum albumin. Dalton Trans 2024; 53:13529-13536. [PMID: 39072685 PMCID: PMC11320662 DOI: 10.1039/d4dt00892h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Human serum albumin (HSA) is the most abundant plasma protein, which functions to transport a large range of ligands within the circulation. These interactions have important implications for human health and disease. The primary binding site for CuII ions on HSA is known to be the so-called amino-terminal CuII and NiII binding (ATCUN) motif. However, the number and identity of secondary binding sites is currently not understood. In this study, we harnessed a suite of contemporary electron paramagnetic resonance (EPR) spectroscopy methods to investigate recombinantly produced constructs of HSA bearing single-histidine knockouts, with the aim to characterise its endogenous CuII ion binding sites.
Collapse
Affiliation(s)
- Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Dongmei Wu
- School of Medicine, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, St Andrews, KY16 9TF, UK.
| | - Alan J Stewart
- School of Medicine, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, St Andrews, KY16 9TF, UK.
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, St Andrews, KY16 9ST, UK
| |
Collapse
|
3
|
Sabouri S, Rostamirad M, Dempski RE. Unlocking the brain's zinc code: implications for cognitive function and disease. FRONTIERS IN BIOPHYSICS 2024; 2:1406868. [PMID: 39758530 PMCID: PMC11698502 DOI: 10.3389/frbis.2024.1406868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Zn2+ transport across neuronal membranes relies on two classes of transition metal transporters: the ZnT (SLC30) and ZIP (SLC39) families. These proteins function to decrease and increase cytosolic Zn2+ levels, respectively. Dysfunction of ZnT and ZIP transporters can alter intracellular Zn2+ levels resulting in deleterious effects. In neurons, imbalances in Zn2+ levels have been implicated as risk factors in conditions such as Alzheimer's disease and neurodegeneration, highlighting the pivotal role of Zn2+ homeostasis in neuropathologies. In addition, Zn2+ modulates the function of plasma membrane proteins, including ion channels and receptors. Changes in Zn2+ levels, on both sides of the plasma membrane, profoundly impact signaling pathways governing cell development, differentiation, and survival. This review is focused on recent developments of neuronal Zn2+ homeostasis, including the impact of Zn2+ dyshomeostasis in neurological disorders, therapeutic approaches, and the increasingly recognized role of Zn2+ as a neurotransmitter in the brain.
Collapse
Affiliation(s)
| | | | - Robert E. Dempski
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
4
|
Wu D, Hierons SJ, Polepalli S, Gucwa M, Fritzen R, Markiewicz M, Sabín J, Minor W, Murzyn K, Blindauer CA, Stewart AJ. Targeted removal of the FA2 site on human albumin prevents fatty acid-mediated inhibition of Zn 2+ binding. J Lipid Res 2024; 65:100560. [PMID: 38750995 PMCID: PMC11179626 DOI: 10.1016/j.jlr.2024.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Zinc is required for virtually all biological processes. In plasma, Zn2+ is predominantly transported by human serum albumin (HSA), which possesses two Zn2+-binding sites of differing affinities (sites A and B). Fatty acids (FAs) are also transported by HSA, with seven structurally characterized FA-binding sites (named FA1-FA7) known. FA binding inhibits Zn2+-HSA interactions, in a manner that can impact upon hemostasis and cellular zinc uptake, but the degree to which binding at specific FA sites contributes to this inhibition is unclear. Wild-type HSA and H9A, H67A, H247A, and Y150F/R257A/S287A (FA2-KO) mutant albumins were expressed in Pichia pastoris. Isothermal titration calorimetry studies revealed that the Zn2+-binding capacity at the high-affinity Zn2+ site (site A) was reduced in H67A and H247A mutants, with site B less affected. The H9A mutation decreased Zn2+ binding at the lower-affinity site, establishing His9 as a site B ligand. Zn2+ binding to HSA and H9A was compromised by palmitate, consistent with FA binding affecting site A. 13C-NMR experiments confirmed that the FA2-KO mutations prohibited FA binding at site FA2. Zn2+ binding to the FA2-KO mutant was unaffected by myristate, suggesting binding at FA2 is solely responsible for inhibition. Molecular dynamics studies identified the steric obstruction exerted by bound FA in site FA2, which impedes the conformational change from open (FA-loaded) to closed (FA-free) states, required for Zn2+ to bind at site A. The successful targeting of the FA2 site will aid functional studies exploring the interplay between circulating FA levels and plasma Zn2+ speciation in health and disease.
Collapse
Affiliation(s)
- Dongmei Wu
- School of Medicine, University of St. Andrews, St. Andrews, UK
| | | | | | - Michal Gucwa
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
| | - Remi Fritzen
- School of Medicine, University of St. Andrews, St. Andrews, UK
| | - Michal Markiewicz
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
| | - Juan Sabín
- AFFINImeter Scientific Team, Software 4 Science Developments, Santiago de Compostela, Spain; Applied Physics Department, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Krzysztof Murzyn
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
| | | | - Alan J Stewart
- School of Medicine, University of St. Andrews, St. Andrews, UK.
| |
Collapse
|
5
|
Metsu D, Cinq-Frais C, Camare C, Caspar-Bauguil S, Galinier A. Zinc unbound concentration as an anchor to drive individualize repletion. Clin Nutr 2024; 43:1021-1023. [PMID: 38513551 DOI: 10.1016/j.clnu.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND AND AIMS Zinc (Zn) quantification is of particular interest in many clinical condition (e.g. inflammatory disease, critical care). Currently, Zn status is assessed by measuring plasma/serum concentration. This concentration corresponds to the sum of unbound Zn (Zn-Cu) and Zn highly bound to albumin (Zn-Cb). METHODS Using a pharmacokinetic approach to the interpretation of total Zn concentration (Zn-Ct), taking into account Zn-Cu and the influence of hypoalbuminemia on Zn-Cb, it is possible to improve the individualization of Zn repletion. RESULTS Therefore, during pregnancy and in certain inflammatory disease situations, repletion may not be necessary. However, as in critical care, it would be more appropriate to perform Zn-Cu assays to improve Zn repletion. CONCLUSION Coupled total and unbound Zn should be monitored in order to individualize Zn repletion.
Collapse
Affiliation(s)
- D Metsu
- Department of Clinical Laboratory, Montauban Hospital, Montauban, France; Institute of Metabolic and Cardiovascular Diseases (I2MC), Equipe MetaDiab, University of Toulouse, INSERM, University of Toulouse III - Paul Sabatier (UPS), Toulouse, France.
| | - C Cinq-Frais
- Department of Biochemistry, Toulouse University Hospital, Toulouse, France
| | - C Camare
- Department of Biochemistry, Toulouse University Hospital, Toulouse, France; Institute for Metabolic and Cardiovascular Diseases (I2MC), UMR 1297, INSERM, University of Toulouse III - Paul Sabatier (UPS), 31432 Toulouse, France
| | - S Caspar-Bauguil
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Equipe MetaDiab, University of Toulouse, INSERM, University of Toulouse III - Paul Sabatier (UPS), Toulouse, France; Department of Biochemistry, Toulouse University Hospital, Toulouse, France
| | - A Galinier
- Department of Biochemistry, Toulouse University Hospital, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
6
|
Squarcina A, Franke A, Senft L, Onderka C, Langer J, Vignane T, Filipovic MR, Grill P, Michalke B, Ivanović-Burmazović I. Zinc complexes of chloroquine and hydroxychloroquine versus the mixtures of their components: Structures, solution equilibria/speciation and cellular zinc uptake. J Inorg Biochem 2024; 252:112478. [PMID: 38218140 DOI: 10.1016/j.jinorgbio.2024.112478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
The zinc complexes of chloroquine (CQ; [Zn(CQH+)Cl3]) and hydroxychloroquine (HO-CQ; [Zn(HO-CQH+)Cl3]) were synthesized and characterized by X-Ray structure analysis, FT-IR, NMR, UV-Vis spectroscopy, and cryo-spray mass spectrometry in solid state as well as in aqueous and organic solvent solutions, respectively. In acetonitrile, up to two Zn2+ ions bind to CQ and HO-CQ through the tertiary amine and aromatic nitrogen atoms (KN-aminCQ = (3.8 ± 0.5) x 104 M-1 and KN-aromCQ = (9.0 ± 0.7) x 103 M-1 for CQ, and KN-aminHO-CQ = (3.3 ± 0.4) x 104 M-1 and KN-aromHO-CQ = (1.6 ± 0.2) x 103 M-1 for HO-CQ). In MOPS buffer (pH 7.4) the coordination proceeds through the partially deprotonated aromatic nitrogen, with the corresponding equilibrium constants of KN-arom(aq)CQ = (3.9 ± 1.9) x 103 M-1and KN-arom(aq)HO-CQ = (0.7 + 0.4) x 103 M-1 for CQ and HO-CQ, respectively. An apparent partition coefficient of 0.22 was found for [Zn(CQH+)Cl3]. Mouse embryonic fibroblast (MEF) cells were treated with pre-synthesized [Zn((HO-)CQH+)Cl3] complexes and corresponding ZnCl2/(HO-)CQ mixtures and zinc uptake was determined by application of the fluorescence probe and ICP-OES measurements. Administration of pre-synthesized complexes led to higher total zinc levels than those obtained upon administration of the related zinc/(hydroxy)chloroquine mixtures. The differences in the zinc uptake between these two types of formulations were discussed in terms of different speciation and character of the complexes. The obtained results suggest that intact zinc complexes may exhibit biological effects distinct from that of the related zinc/ligand mixtures.
Collapse
Affiliation(s)
- Andrea Squarcina
- Department of Chemistry, Ludwig-Maximilians Universität (LMU) München, München 81377, Germany
| | - Alicja Franke
- Department of Chemistry, Ludwig-Maximilians Universität (LMU) München, München 81377, Germany
| | - Laura Senft
- Department of Chemistry, Ludwig-Maximilians Universität (LMU) München, München 81377, Germany
| | - Constantin Onderka
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Jens Langer
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Thibaut Vignane
- Leibniz Institute for Analytical Sciences, ISAS e.V., 44227 Dortmund, Germany
| | - Milos R Filipovic
- Leibniz Institute for Analytical Sciences, ISAS e.V., 44227 Dortmund, Germany
| | - Peter Grill
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | | |
Collapse
|
7
|
Doboszewska U, Maret W, Wlaź P. GPR39: An orphan receptor begging for ligands. Drug Discov Today 2024; 29:103861. [PMID: 38122967 DOI: 10.1016/j.drudis.2023.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Progress in the understanding of the receptor GPR39 is held up by inconsistent pharmacological data. First, the endogenous ligand(s) remain(s) contentious. Data pointing to zinc ions (Zn2+) and/or eicosanoids as endogenous ligands are a matter of debate. Second, there are uncertainties in the specificity of the widely used synthetic ligand (agonist) TC-G 1008. Third, activation of GPR39 has been often proposed as a novel treatment strategy, but new data also support that inhibition might be beneficial in certain disease contexts. Constitutive activity/promiscuous signaling suggests the need for antagonists/inverse agonists in addition to (biased) agonists. Here, we scrutinize data on the signaling and functions of GPR39 and critically assess factors that might have contributed to divergent outcomes and interpretations of investigations on this important receptor.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Wolfgang Maret
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, UK
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| |
Collapse
|
8
|
Dorward AM, Stewart AJ, Pitt SJ. The role of Zn2+ in shaping intracellular Ca2+ dynamics in the heart. J Gen Physiol 2023; 155:e202213206. [PMID: 37326614 PMCID: PMC10276528 DOI: 10.1085/jgp.202213206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/18/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Increasing evidence suggests that Zn2+ acts as a second messenger capable of transducing extracellular stimuli into intracellular signaling events. The importance of Zn2+ as a signaling molecule in cardiovascular functioning is gaining traction. In the heart, Zn2+ plays important roles in excitation-contraction (EC) coupling, excitation-transcription coupling, and cardiac ventricular morphogenesis. Zn2+ homeostasis in cardiac tissue is tightly regulated through the action of a combination of transporters, buffers, and sensors. Zn2+ mishandling is a common feature of various cardiovascular diseases. However, the precise mechanisms controlling the intracellular distribution of Zn2+ and its variations during normal cardiac function and during pathological conditions are not fully understood. In this review, we consider the major pathways by which the concentration of intracellular Zn2+ is regulated in the heart, the role of Zn2+ in EC coupling, and discuss how Zn2+ dyshomeostasis resulting from altered expression levels and efficacy of Zn2+ regulatory proteins are key drivers in the progression of cardiac dysfunction.
Collapse
Affiliation(s)
- Amy M. Dorward
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Alan J. Stewart
- School of Medicine, University of St Andrews, St Andrews, UK
| | | |
Collapse
|