1
|
Chen C, Chen Y, Du H, Xu J, Yang Z. Enantioselective and Regiodivergent Skeletal Transformations of 1,2,3-Thiadiazoles to Alkylidene Dihydrothiophenes. Org Lett 2025; 27:4337-4342. [PMID: 40240367 DOI: 10.1021/acs.orglett.5c01067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
By leveraging the Rh-catalyzed asymmetric skeletal editing of 1,2,3-thiadiazoles, we successfully achieve the ligand-controlled enantioselective and regiodivergent synthesis of structurally diverse 2- and 3-alkylidene 2,3-dihydrothiophenes. Late-stage structural editing of complex natural and drug molecules is also enabled.
Collapse
Affiliation(s)
- Cunzhi Chen
- College of Chemistry, Beijing University of Chemical Technology, 15 Beisanhuan East Rd, Chaoyang, Beijing 100029, P. R. China
| | - Youwei Chen
- College of Chemistry, Beijing University of Chemical Technology, 15 Beisanhuan East Rd, Chaoyang, Beijing 100029, P. R. China
| | - Hongguang Du
- College of Chemistry, Beijing University of Chemical Technology, 15 Beisanhuan East Rd, Chaoyang, Beijing 100029, P. R. China
| | - Jiaxi Xu
- College of Chemistry, Beijing University of Chemical Technology, 15 Beisanhuan East Rd, Chaoyang, Beijing 100029, P. R. China
| | - Zhanhui Yang
- College of Chemistry, Beijing University of Chemical Technology, 15 Beisanhuan East Rd, Chaoyang, Beijing 100029, P. R. China
| |
Collapse
|
2
|
Maeda B, Akiyoshi R, Tanaka D, Sato K, Murakami K. Synthesis of N-β-brominated alkenyl isothiocyanates via dehydrogenation of alkyl isothiocyanates. Chem Commun (Camb) 2024; 60:6015-6018. [PMID: 38771143 DOI: 10.1039/d4cc01666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
This study presents a new dehydrogenative synthesis of alkenyl isothiocyanates, providing compounds with bromo and isothiocyanate groups. These reactive functionalities offer versatility for further transformations. Application in an amine sensor utilizing a coumarin-attached product demonstrates practical utility. This streamlined approach facilitates access to alkenyl isothiocyanates, valuable tools for biological studies.
Collapse
Affiliation(s)
- Bumpei Maeda
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan.
| | - Ryohei Akiyoshi
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan.
| | - Daisuke Tanaka
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan.
| | - Kohei Sato
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan.
| | - Kei Murakami
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan.
- Japanese Science and Technology Agency (JST)-PRESTO, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
3
|
Das B, Dahiya A, Patel BK. Isothiocyanates: happy-go-lucky reagents in organic synthesis. Org Biomol Chem 2024; 22:3772-3798. [PMID: 38656266 DOI: 10.1039/d4ob00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Owing to their unique structural features, isothiocyanates (ITCs) are a class of highly useful and inimitable reagents as the -NCS group serves both as electrophile and nucleophile in organic synthesis. ITCs share a rich legacy in organic, medicinal, and combinatorial chemistry. Compared to their oxygen equivalents, isocyanates, ITCs are easily available, less unpleasant, and somewhat less harmful to work with (mild conditions) which makes them happy-go-lucky reagents. Functionalized ITCs can finely tune the reactivity of the -NCS group and thus can be exploited in the late-stage functionalization processes. This review's primary aim is to outline ITC chemistry in the construction and derivatization of heterocycles through the lens of sustainability. For ease and brevity, the sections are divided based on reactive centers present in functionalized ITCs and modes of cyclisation. Scrutinizing their probable unexplored directions for future research studies is also addressed.
Collapse
Affiliation(s)
- Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
- Department of Chemistry, Bagadhar Brahma Kishan College, Jalah, Assam 781327, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| |
Collapse
|
4
|
Feng M, Huang B, Jiang H, Huang L. Synthesis of γ-Thiapyrones by Diels-Alder/Retro-Diels-Alder Reaction of α-Pyrones with 5- H-1,2,3-Thiadiazoles. J Org Chem 2024; 89:5846-5850. [PMID: 38584435 DOI: 10.1021/acs.joc.3c02889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The efficient synthesis of γ-thiapyrones by a base-mediated Diels-Alder/retro-Diels-Alder reaction of α-pyrones with 5-H-1,2,3-thiadiazoles is reported herein. Thioketenes in situ generated from thiadiazoles as electron-poor dienophile and electron-rich 4-hydroxy-2-pyrones as dienes are conjunctively transformed into a series of γ-thiapyrones with broad functional group compatibility in good to excellent yields (35 examples, 67% average yield).
Collapse
Affiliation(s)
- Mengxia Feng
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Bin Huang
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Liangbin Huang
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
5
|
Maeda B, Murakami K. Recent advancement in the synthesis of isothiocyanates. Chem Commun (Camb) 2024; 60:2839-2864. [PMID: 38380440 DOI: 10.1039/d3cc06118c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Isothiocyanates exhibit various biological characteristics, including antimicrobial, anti-inflammatory, and anticancer properties. Their significance extends to synthetic chemistry, where they serve as valuable platforms for versatile transformations. Consequently, they have attracted the attention of biologists and chemists. This review summarizes recent advancements in the synthesis of isothiocyanates. Access to a variety of starting materials is important to prepare isothiocyanates with diverse structures. This review categorizes synthetic methods into three types based on the starting materials and functional groups: (i) type A, derived from primary amines; (ii) type B, derived from other nitrogen functional groups; and (iii) type C, derived from non-nitrogen groups. Recent trends in synthetic methods have revealed the prevalence of type-A reactions derived from primary amines. However, type B reactions have rarely been reported. Notably, over the past four years, there has been a notable increase in type C reactions, indicating a growing interest in non-nitrogen-derived isothiocyanates. Overall, this review not only outlines the advancements in the synthesis of isothiocyanates but also highlights trends in the methodology.
Collapse
Affiliation(s)
- Bumpei Maeda
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan.
| | - Kei Murakami
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan.
- Japanese Science and Technology Agency (JST)-PRESTO, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
6
|
Maeda B, Aihara Y, Sato A, Kinoshita T, Murakami K. Photoinduced Synthesis of Thiocyanates through Hydrogen Atom Transfer and One-Pot Derivatization to Isothiocyanates. Org Lett 2022; 24:7366-7371. [PMID: 36194477 DOI: 10.1021/acs.orglett.2c02896] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photoinduced benzylic C-H thiocyanation is described. A series of alkyl thiocyanates were efficiently obtained by using Selectfluor as the oxidant. Moreover, we accomplished the one-pot isothiocyanation following the C-H thiocyanation. The thiocyanates and isothiocyanates were applied to the divergent transformation of pharmaceuticals.
Collapse
Affiliation(s)
- Bumpei Maeda
- Department of Chemistry, School of Science, Kwansei Gakuin University, 2-1 Gakuin, Sanda, Hyogo 669-1337, Japan
| | - Yusuke Aihara
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Kei Murakami
- Department of Chemistry, School of Science, Kwansei Gakuin University, 2-1 Gakuin, Sanda, Hyogo 669-1337, Japan.,JST-PRESTO, 7 Gobancho, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|