1
|
Yu K, Guan S, Zhang W, Zhang W, Meng Y, Lin H, Gao Q. Engineering Asymmetric Electronic Structure of Co─N─C Single-Atomic Sites Toward Excellent Electrochemical H 2O 2 Production and Biomass Upgrading. Angew Chem Int Ed Engl 2025; 64:e202502383. [PMID: 40014009 DOI: 10.1002/anie.202502383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 02/28/2025]
Abstract
To advance electrochemical H2O2 production and unravel catalytic mechanisms, the precise structural coordination of single-atomic M-N-C electrocatalysts is urgently required. Herein, the Co─N5 site with an asymmetric electronic configuration is constructed to boost the two-electron oxygen reduction reaction (2e- ORR) compared to symmetric Co─N4, effectively overcoming the trade-off between activity and selectivity in H2O2 production. Both experimental and theoretical analyses demonstrate that breaking the symmetry of Co─N sites promotes the activation of O2 molecules and moderates the adsorption of the key *OOH intermediate by disrupting the linear scaling relationship for intermediates adsorption. This modulation enables efficient H₂O₂ production and its effective retention for subsequent applications. As a proof of concept, Co─N5 achieves a H2O2 production rate as high as 16.1 mol gcat -1 h-1 in a flow cell, outperforming most recently reported counterparts. Furthermore, the coupling of 2e- ORR with the oxidation of cellulose-derived carbohydrates accomplishes high formic acid yields (84.1% from glucose and 62.0%-92.1% from other substrates), underpinning the sustainable electro-refinery for biomass valorization at ambient conditions. By elucidating the intrinsic relationship between 2e⁻ ORR and the asymmetry of single-atomic sites, this work paves the way for high-performance electrosynthesis.
Collapse
Affiliation(s)
- Kun Yu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P.R. China
| | - Shiming Guan
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P.R. China
| | - Wenbiao Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P.R. China
| | - Wanling Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P.R. China
| | - Yuying Meng
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P.R. China
| | - Huaijun Lin
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P.R. China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P.R. China
| |
Collapse
|
2
|
Tan S, Wang R, Dong J, Zhang K, Zhao Z, Yin Q, Liu J, Yang W, Cheng J. Hydrothermal-mediated in-situ nitrogen doping to prepare biochar for enhancing oxygen reduction reactions in microbial fuel cells. BIORESOURCE TECHNOLOGY 2025; 416:131789. [PMID: 39528030 DOI: 10.1016/j.biortech.2024.131789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Nitrogen-doped carbon materials are deemed promising cathode catalysts for microbial fuel cells (MFCs). The challenge lies in reducing costs and enhancing the proportion of electrocatalytically active nitrogenous functional groups. This study proposes a hydrothermal-mediated in-situ doping method to produce nitrogen-doped biochar from aquatic plants. The nitrogen atoms are anchored in the carbon structure during hydrothermal treatment. Subsequent pyrolysis converts the hydrochar into a catalyst with highly catalytically active aromatic ring structure (HC-N+PY). The as-prepared HC-N+PY electrocatalyst demonstrates superior oxygen reduction reaction activity with half-wave potentials of 0.82 V. The MFC with HC-N+PY exhibits excellent performance, with a peak power density of 1444 mW/m2. Theoretical calculations demonstrate that the synergistic effect of graphitic nitrogen and C-O groups at defect sites enhances O2 adsorption and protonation. This work highlights the potential of utilizing nitrogen-doped biochar derived from aquatic plants as an effective catalyst for enhancing the performance of microbial fuel cells.
Collapse
Affiliation(s)
- Shiteng Tan
- Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding 071003, Hebei, China
| | - Ruikun Wang
- Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding 071003, Hebei, China.
| | - Jialiang Dong
- Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding 071003, Hebei, China
| | - Kai Zhang
- Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding 071003, Hebei, China
| | - Zhenghui Zhao
- Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding 071003, Hebei, China
| | - Qianqian Yin
- Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding 071003, Hebei, China
| | - Jingwei Liu
- Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding 071003, Hebei, China
| | - Weijie Yang
- Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding 071003, Hebei, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Choi JS, Fortunato GV, Jung DC, Lourenço JC, Lanza MRV, Ledendecker M. Catalyst durability in electrocatalytic H 2O 2 production: key factors and challenges. NANOSCALE HORIZONS 2024; 9:1250-1261. [PMID: 38847073 DOI: 10.1039/d4nh00109e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
On-demand electrocatalytic hydrogen peroxide (H2O2) production is a significant technological advancement that offers a promising alternative to the traditional anthraquinone process. This approach leverages electrocatalysts for the selective reduction of oxygen through a two-electron transfer mechanism (ORR-2e-), holding great promise for delivering a sustainable and economically efficient means of H2O2 production. However, the harsh operating conditions during the electrochemical H2O2 production lead to the degradation of both structural integrity and catalytic efficacy in these materials. Here, we systematically examine the design strategies and materials typically utilized in the electroproduction of H2O2 in acidic environments. We delve into the prevalent reactor conditions and scrutinize the factors contributing to catalyst deactivation. Additionally, we propose standardised benchmarking protocols aimed at evaluating catalyst stability under such rigorous conditions. To this end, we advocate for the adoption of three distinct accelerated stress tests to comprehensively assess catalyst performance and durability.
Collapse
Affiliation(s)
- Ji Sik Choi
- Department of Technical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany.
- Sustainable Energy Materials, Technical University Munich, Campus Straubing, Schulgasse 22, 94315 Straubing, Germany.
| | - Guilherme V Fortunato
- Department of Technical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany.
- Sustainable Energy Materials, Technical University Munich, Campus Straubing, Schulgasse 22, 94315 Straubing, Germany.
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
| | - Daniele C Jung
- Department of Technical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany.
| | - Julio C Lourenço
- Sustainable Energy Materials, Technical University Munich, Campus Straubing, Schulgasse 22, 94315 Straubing, Germany.
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
| | - Marc Ledendecker
- Sustainable Energy Materials, Technical University Munich, Campus Straubing, Schulgasse 22, 94315 Straubing, Germany.
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058 Erlangen, Germany
| |
Collapse
|
4
|
Shi J, Huang T, Wu R, Wu J, Li Y, Kuang Y, Xing H, Zhang W. Direct carbonization of cellulose toward hydroxyl-rich porous carbons for pseudocapacitive energy storage. Int J Biol Macromol 2024; 264:130460. [PMID: 38437937 DOI: 10.1016/j.ijbiomac.2024.130460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/06/2024]
Abstract
Designing carbon materials with specific oxygen-containing functional groups is very attractive for the precise decoration of carbon electrode materials and the basic understanding of specific charge storage mechanisms, which contributes to the further development of high-performance carbon materials for energy storage and conversion applications. In this contribution, a hydroxyl-rich micropore-dominated porous carbon material was obtained by direct carbonization of cellulose. The content of oxygen atoms in hydroxyl form in the obtained carbon is nearly 6 at.%. With the pyrolysis temperature changed, the macroscopic morphology, the specific surface area, surface functional groups, and graphitization degree of the carbon materials were changed strongly. Besides, the carbon material obtained with a carbonization temperature of 900 °C (C9) showed enhanced specific capacitance in sulfuric acid, sodium hydroxide, and sodium sulfate aqueous electrolytes, which mainly originates from the contribution of pseudocapacitance. The pseudocapacitance mainly depends on the presence of surface hydroxyl functional groups. Besides, the pseudocapacitance value of C9 material in neutral electrolytes (151.34 F g-1) is about twice that in acidic (75.9 F g-1) and alkaline (75.78 F g-1) electrolytes.
Collapse
Affiliation(s)
- Jun Shi
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Zhuhai 519040, PR China; Faculty of Comprehensive Health Industry, Zhuhai College of Science and Technology, Zhuhai 519040, PR China
| | - Tao Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Guangzhou 510006, PR China
| | - Ruoyu Wu
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Zhuhai 519040, PR China
| | - Jiani Wu
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Zhuhai 519040, PR China
| | - Yulong Li
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519040, PR China
| | - Yongxi Kuang
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519040, PR China
| | - Hongmei Xing
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Zhuhai 519040, PR China; Faculty of Comprehensive Health Industry, Zhuhai College of Science and Technology, Zhuhai 519040, PR China.
| | - Wenli Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Guangzhou 510006, PR China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| |
Collapse
|
5
|
Guo W, Yu L, Tang L, Wan Y, Lin Y. Recent Advances in Mechanistic Understanding of Metal-Free Carbon Thermocatalysis and Electrocatalysis with Model Molecules. NANO-MICRO LETTERS 2024; 16:125. [PMID: 38376726 PMCID: PMC10879078 DOI: 10.1007/s40820-023-01262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 02/21/2024]
Abstract
Metal-free carbon, as the most representative heterogeneous metal-free catalysts, have received considerable interests in electro- and thermo-catalytic reactions due to their impressive performance and sustainability. Over the past decade, well-designed carbon catalysts with tunable structures and heteroatom groups coupled with various characterization techniques have proposed numerous reaction mechanisms. However, active sites, key intermediate species, precise structure-activity relationships and dynamic evolution processes of carbon catalysts are still rife with controversies due to the monotony and limitation of used experimental methods. In this Review, we summarize the extensive efforts on model catalysts since the 2000s, particularly in the past decade, to overcome the influences of material and structure limitations in metal-free carbon catalysis. Using both nanomolecule model and bulk model, the real contribution of each alien species, defect and edge configuration to a series of fundamentally important reactions, such as thermocatalytic reactions, electrocatalytic reactions, were systematically studied. Combined with in situ techniques, isotope labeling and size control, the detailed reaction mechanisms, the precise 2D structure-activity relationships and the rate-determining steps were revealed at a molecular level. Furthermore, the outlook of model carbon catalysis has also been proposed in this work.
Collapse
Affiliation(s)
- Wei Guo
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Linhui Yu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
| | - Ling Tang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Yan Wan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Yangming Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|