1
|
Suri Babu U, Naveen Kumar M, Mahesh S, Nanubolu JB, Sridhar Reddy M. Pd-catalyzed ortho-/ meta-C-H-annulation of biphenyl amines with enynes through non-rollover cyclometallation. Org Biomol Chem 2025; 23:292-296. [PMID: 39552200 DOI: 10.1039/d4ob01689k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Annulations through dual C-H activation represent a powerful tool to selectively assemble multi-cyclic scaffolds. We present herein a palladium-catalyzed ortho-/meta-C-H-annulation of biphenyl amines with 1,6-enynes. This regioselective non-rollover cyclometallation was achieved through meticulous tuning of electronic factors of both the partners. This method is applicable to a wide range of protected o-arylanilines and enynes, and results in the regioselective preparation of benzo[f]isoindolyl derivatives in high yields with good diastereoselectivity (with respect to two types of stereogenic elements). Certain essential control experiments and kinetic isotope effect (KIE) studies were undertaken to elucidate the reaction mechanism, while subsequent transformations and a scale-up reaction were performed to substantiate the sturdiness of the transformation.
Collapse
Affiliation(s)
- Undamatla Suri Babu
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Muniganti Naveen Kumar
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Shivunapuram Mahesh
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
| | | | - Maddi Sridhar Reddy
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
2
|
Chen C, Chen Y, Han Z, Huang Y, Wang Y, Tao X, Wang L, Chen X, Long R, Yang Y, Zhu W, Zhou B. Switchable Regioselective C-H Activation/Annulation of Acrylamides with Alkynes for the Synthesis of 2-Pyridones. CHEMSUSCHEM 2024; 17:e202400066. [PMID: 38656829 DOI: 10.1002/cssc.202400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
A catalyst-based switchable regioselective C-H activation/annulation of acrylamides with propargyl carbonates has been developed, delivering C5 or C6 alkenyl substituted 2-pyridones. This robust protocol proceeds with a broad substrate scope and good functional group tolerance under redox-neutral reaction conditions. More significantly, this reaction is highly effective with previously challenging unsymmetrical alkynes, including unbiased alkyl-alkyl substituted alkynes, with perfect and switchable regioselectivity. Additionally, mechanistic studies and DFT calculations were performed to shed light on the switchable regioselectivity.
Collapse
Affiliation(s)
- Chao Chen
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Yanni Chen
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Zijian Han
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yujie Huang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujiao Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiuyu Tao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Lan Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Xiangli Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ruikai Long
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yaxi Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Bing Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| |
Collapse
|
3
|
Jana D, Sontakke GS, Volla CMR. Ru(II)-Catalyzed Decarboxylative (4 + 2)-Annulation of Benzoic Acids and Benzamides with Propargyl Cyclic Carbonates. Org Lett 2024; 26:7590-7595. [PMID: 39226140 DOI: 10.1021/acs.orglett.4c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Propargyl cyclic carbonates have emerged as versatile precursors in synthetic chemistry. However, their reactivity has so far been limited to transition metal-catalyzed substitution and cyclization reactions. Herein, we illustrate the successful employment of propargyl cyclic carbonates as coupling partners in Ru(II)-catalyzed C-H annulation of benzoic acids and benzamides. This approach allowed us to access a broad range of biologically relevant isocoumarin and isoquinolinone derivatives in good to excellent yields, utilizing bench-stable and easily accessible precursors. Preliminary mechanistic studies indicated that the C-H metalation step is both reversible and rate-determining in the reaction pathway. Furthermore, the utility of the developed methodology has been illustrated by scale-up and postfunctionalization experiments.
Collapse
Affiliation(s)
- Debasish Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Geetanjali S Sontakke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
4
|
Mahulkar PS, Joshi S, Banjare SK, Najiar LO, Ravikumar PC. Expanding the Scope of Alkynes in C-H Activation: Weak Chelation-Assisted Cobalt-Catalyzed Synthesis of Indole C(4)-Acrylophenone via C-O Bond Cleavage of Propargylic Ethers. Org Lett 2024; 26:2091-2096. [PMID: 38441887 DOI: 10.1021/acs.orglett.4c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024]
Abstract
Herein, we report the facile synthesis of indole C(4)-acrylophenone using a C-H bond activation strategy. For this conversion, an unsymmetrical alkyne (phenylethynyl ether) in the presence of cobalt(III)-catalyst works efficiently. In this process, alkyne gets oxidized in the presence of in situ generated water, which is the key step for this method, for which trifluoroethanol is the water source. The pivaloyl directing group chelates effectively to generate the cobaltacycle intermediate, which was detected through high-resolution mass spectrometry (HRMS). Also, the formation of bis(2,2,2-trifluoroethyl) ether has been confirmed and quantified using 19F NMR. In addition, the applicability of obtained indole C(4)-acrylophenone product has been demonstrated by performing the Nazarov cyclization and conjugate addition to the α,β-unsaturated ketone moiety.
Collapse
Affiliation(s)
- Pranav Shridhar Mahulkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sofaya Joshi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Lamphiza O Najiar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
5
|
Hosseininezhad S, Ramazani A. Recent advances in the application of alkynes in multicomponent reactions. RSC Adv 2024; 14:278-352. [PMID: 38173570 PMCID: PMC10759206 DOI: 10.1039/d3ra07670a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Alkynes have two active positions to carry out chemical reactions: C[triple bond, length as m-dash]C and C-H. These two positions are involved and activated in different reactions using different reagents. In this study, we investigated the reactions of alkynes that are involved in multi-component reactions through the C-C and C-H positions and examined the progress and gaps of each reaction by carefully studying the mechanism of the reactions. Firstly, we investigated and analyzed the reactions involving the C[triple bond, length as m-dash]C position of alkynes, including the reactions between derivatives of alkynes with RN3, sulfur compounds (RSO2R', DMSO, S8, DABCO(SO2)2 and DABSO), barbituric acids, aldehydes and amines, COOH, α-diazoesters or ketones, and isocyanides. Then, we examined and analyzed the important reactions involving the C-H position of alkynes and the progress and gaps in these reactions, including the reaction between alkyne derivatives with amines and aldehydes for the synthesis of propargylamines, the reaction between alkynes with CO2 and the reaction between alkynes with CO.
Collapse
Affiliation(s)
- Seyedmohammad Hosseininezhad
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Ali Ramazani
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
- The Convergent Sciences & Technologies Laboratory (CSTL), Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan Zanjan 45371-38791 Iran
| |
Collapse
|
6
|
David M, Galli E, Brown RCD, Feroci M, Vetica F, Bortolami M. 1-Butyl-3-methylimidazolium tetrafluoroborate as suitable solvent for BF 3: the case of alkyne hydration. Chemistry vs electrochemistry. Beilstein J Org Chem 2023; 19:1966-1981. [PMID: 38169890 PMCID: PMC10760484 DOI: 10.3762/bjoc.19.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
In order to replace the expensive metal/ligand catalysts and classic toxic and volatile solvents, commonly used for the hydration of alkynes, the hydration reaction of alkynes was studied in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIm-BF4) adding boron trifluoride diethyl etherate (BF3·Et2O) as catalyst. Different ionic liquids were used, varying the cation or the anion, in order to identify the best one, in terms of both efficiency and reduced costs. The developed method was efficaciously applied to different alkynes, achieving the desired hydration products with good yields. The results obtained using a conventional approach (i.e., adding BF3·Et2O) were compared with those achieved using BF3 electrogenerated in BMIm-BF4, demonstrating the possibility of obtaining the products of alkyne hydration with analogous or improved yields, using less hazardous precursors to generate the reactive species in situ. In particular, for terminal arylalkynes, the electrochemical route proved to be advantageous, yielding preferentially the hydration products vs the aldol condensation products. Importantly, the ability to recycle the ionic liquid in subsequent reactions was successfully demonstrated.
Collapse
Affiliation(s)
- Marta David
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via Castro Laurenziano, 7, 00161 Rome, Italy
| | - Elisa Galli
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via Castro Laurenziano, 7, 00161 Rome, Italy
| | - Richard C D Brown
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Marta Feroci
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via Castro Laurenziano, 7, 00161 Rome, Italy
| | - Fabrizio Vetica
- Department of Chemistry, Sapienza University of Rome, piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Martina Bortolami
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via Castro Laurenziano, 7, 00161 Rome, Italy
| |
Collapse
|
7
|
Lv Y, Wang Z, Song L, Hao J, Zhu S, Yue H, Wei W, Yi D. Copper-Catalyzed Three-Component Tandem Reaction of Alkynes, α-Diazo Esters, and TMSN 3 to Access N-Substituted 1,2,3-Triazoles. J Org Chem 2023. [PMID: 38047963 DOI: 10.1021/acs.joc.3c02112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
An efficient copper-catalyzed three-component tandem reaction of alkynes, α-diazo esters, and TMSN3 to construct triazoles has been developed. Through this strategy, a number of diverse N-substituted 1,2,3-triazoles were conveniently obtained in moderate to good yields from simple and readily available starting materials using K2CO3 as the base. The mechanism of the tandem Cu-catalyzed azide-alkyne cycloaddition (CuAAC) and Cu-carbenoid-participated C-N coupling reaction has been investigated.
Collapse
Affiliation(s)
- Yufen Lv
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Zhiwei Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Lianhui Song
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jindong Hao
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Shuyun Zhu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China
| | - Wei Wei
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Dong Yi
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, P. R. China
| |
Collapse
|
8
|
Kumar MN, Suresh V, Nagireddy A, Nanubolu JB, Reddy MS. Pd-catalyzed regioselective rollover dual C-H annulation cascade: facile approach to phenanthrene derivatives. Chem Commun (Camb) 2023. [PMID: 37475606 DOI: 10.1039/d3cc02523c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Annulations of unsaturated systems through C-H activation represent a powerful tool for producing multicyclic scaffolds. Having coordinating centers in both annulation partners (a dual coordination strategy) would afford remarkable selectivities in the outcomes. Along this concept, we report herein a Pd-catalyzed regioselective rollover cascade dual C-H annulation of o-arylphenols with alkynols for constructing phenanthrene scaffolds. Control, KIE and deuteration studies were conducted to determine the reaction mechanism, and downstream transformations and scaled-up reactions were carried out to assess the robustness of the transformation.
Collapse
Affiliation(s)
- Muniganti Naveen Kumar
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | - Vavilapalli Suresh
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | - Attunuri Nagireddy
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | | | - Maddi Sridhar Reddy
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| |
Collapse
|
9
|
Baghel AS, Pratap R, Kumar A. Ru(II)-Catalyzed Weakly Coordinating Carbonyl-Assisted Dialkynylation of (Hetero)Aryl Ketones. J Org Chem 2023. [PMID: 37307505 DOI: 10.1021/acs.joc.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Functionalized aryl(heteroaryl) ketones are present in many natural products as key structural components and serve as basic synthetic building blocks for various organic transformation reactions. Therefore, the development of an effective and sustainable route for making these classes of compounds remains challenging yet highly desirable. Herein, we report a simple and efficient catalytic system for dialkynylation of aromatic/heteroaromatic ketones via a double C-H bond activation in the presence of less expensive ruthenium(II)-salt as a catalyst using the weakly and native carbonyl group as the desired directing group. The developed protocol is highly compatible, tolerant, and sustainable toward various functional groups. The synthetic utility of the developed protocol has been demonstrated through the scale-up synthesis and functional group transformation. Control experiments support the involvement of the base-assisted internal electrophilic substitution (BIES) reaction pathway.
Collapse
Affiliation(s)
- Akanksha Singh Baghel
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| | - Ramendra Pratap
- Department of Chemistry, Delhi University, Delhi 110007, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| |
Collapse
|
10
|
Suresh V, Naveen Kumar M, Nagireddy A, Sridhar Reddy M. Rhodium‐Catalyzed Dual C−H Activation for Regioselective Triple Annulation of Enaminones: Access to Polycyclic Naphthopyran Derivatives. Adv Synth Catal 2023. [DOI: 10.1002/adsc.202300131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Vavilapalli Suresh
- OSPC Division CSIR-Indian Institute of Chemical Technology Habsiguda Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India
| | - Muniganti Naveen Kumar
- OSPC Division CSIR-Indian Institute of Chemical Technology Habsiguda Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India
| | - Attunuri Nagireddy
- OSPC Division CSIR-Indian Institute of Chemical Technology Habsiguda Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India
| | - Maddi Sridhar Reddy
- OSPC Division CSIR-Indian Institute of Chemical Technology Habsiguda Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India
| |
Collapse
|
11
|
Kumar S, Kumar Sabbi T, Pingale R, Girase P, Kanchupalli V. 1,3-Diynes: A Versatile Precursor in Transition-Metal Catalyzed (Mediated) C-H Functionalizations. CHEM REC 2023; 23:e202200228. [PMID: 36512645 DOI: 10.1002/tcr.202200228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/25/2022] [Indexed: 12/15/2022]
Abstract
Transition metal-catalyzed C-H functionalization of diverse arenes with alkyne units has attracted enormous attention for decades since they provide straightforward access to various functionalization/annulations, which are commonly present in bioactive compounds and natural products. Recently, conjugated alkynes (1,3-diynes) have been utilized as key coupling partner in many C-H activation reactions due to their versatile characteristic properties. The presence of two C≡C bonds in conjugated 1,3-diyne brings the new diversity in synthetic transformations, such as chemo-, regioselective pathways, mono-bis functionalizations, cascade annulations, etc. Herein, we summarized the latest developments in the realm of transition-metal-catalyzed C-H functionalizations of diverse arenes with 1,3-diynes. Moreover, we highlighted the diverse transformations, conditions, mechanisms and applications of the corresponding reaction in detail.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Tharun Kumar Sabbi
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Rasika Pingale
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Pradeep Girase
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Vinaykumar Kanchupalli
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| |
Collapse
|
12
|
Banjare SK, Saxena A, Nanda T, Prusty N, Joshi S, Ravikumar PC. Weak-Chelation Assisted Cobalt-Catalyzed C-H Bond Activation: An Approach Toward Regioselective Ethynylation of N-Aryl γ-Lactam. Org Lett 2023; 25:251-255. [PMID: 36580352 DOI: 10.1021/acs.orglett.2c04098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The sustainable C-H bond ethynylation of N-aryl γ-lactam has been achieved in a highly regioselective manner. In this protocol, earth-abundant cobalt(III)-catalyst was found to be effective, triggering the C-H metalation using a weakly coordinating lactam group. Herein, the ortho-(sp2)-H ethynylation has been obtained regioselectively. The mechanistic studies reveal the non-involvement of the radical pathway for this conversion. However, the parallel kinetic isotope experiment suggests that the C-H bond activation is involved in the rate-determining step. In addition, the synthetic utility of ethynylated N-aryl γ-lactam has been demonstrated for many useful transformations.
Collapse
Affiliation(s)
- Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050 India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Annapurna Saxena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050 India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050 India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Namrata Prusty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050 India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sofaya Joshi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050 India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050 India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
13
|
Bora J, Dutta M, Chetia B. Cobalt catalyzed alkenylation/annulation reactions of alkynes via C–H activation: A review. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|