1
|
Cong Y, Li X, Gao J, Zheng Q, Wang Y, Wang X, Lv SW. Interface coupling to improve O 2 adsorption and accelerate charge separation for boosting photocatalytic performance of ZnO/ZnIn 2S 4 composite in H 2O 2 production and environmental remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122406. [PMID: 39226809 DOI: 10.1016/j.jenvman.2024.122406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
The key to heterogeneous photo-Fenton technology lies in the efficient generation of hydrogen peroxide (H2O2). Herein, a newly-designed ZnO/ZnIn2S4 composite with heterostructure is synthesized. Benefiting from the formation of built-in electric field, the recombination of photoinduced electrons and holes is suppressed and interfacial charge transfer resistance is reduced. Importantly, the embedding of ZnO in ZnIn2S4 can improve the hydrophobicity and create microscopic three-phase interface, thereby boosting the capture capability for O2 and providing the convenience for the occurrence of O2 reduction reaction. More interestingly, the existence of ZnIn2S4 in the ZnO/ZnIn2S4 composite can reduce the Gibbs free energy (ΔG) of key intermediate (OOH*) formation, which will accelerate the generation of H2O2. As a result, the ZnO/ZnIn2S4 composite displays excellent performance in photocatalytic H2O2 production, and the highest yield was about 897.6 μmol/g/h within 60 min under visible light irradiation. The transfer of photoinduced carriers follows the S-scheme type mechanism. The photogenerated holes can be captured by drug residues (i.e., diclofenac sodium) to accelerate H2O2 production, while generated H2O2 can combine with Fe2+ to construct photo-Fenton system for achieving the advanced degradation of diclofenac sodium, which was mainly related to the formation of OH•. Furthermore, generated H2O2 can be applied for performing the inactivation of pathogenic bacteria. In short, current work will provide a valuable reference for future research.
Collapse
Affiliation(s)
- Yanqing Cong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xinyue Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jiayi Gao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qiuang Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yudi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xiaoran Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Shi-Wen Lv
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Lu Y, Zhao J, Sun H, Li J, Yu Z, Ma C, Zhu H, Meng Q. Visible Light-Mediated Selective Aerobic Oxidation of Alcohols Catalyzed by Disulfide in Batch and Flow. J Org Chem 2024; 89:3868-3874. [PMID: 38417115 DOI: 10.1021/acs.joc.3c02718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Selective aerobic oxidation of alcohols in batch and flow can be realized under light irradiation, utilizing disulfide as the photocatalyst, and a variety of primary and secondary alcohols were converted to the corresponding aldehydes or ketones in up to 99% yield and high selectivity. The reaction efficiency could be increased even further by combining a continuous-flow strategy. Detailed mechanistic studies have also been achieved to determine the role of oxygen and disulfides in this oxidation.
Collapse
Affiliation(s)
- Yue Lu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingnan Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Huinan Sun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jianing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zongyi Yu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cunfei Ma
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Hongfei Zhu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qingwei Meng
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Dalian University of Technology, Ningbo 315000, P. R. China
| |
Collapse
|
3
|
Freese T, Meijer JT, Brands MB, Alachouzos G, Stuart MCA, Tarozo R, Gerlach D, Smits J, Rudolf P, Reek JNH, Feringa BL. Iron oxide-promoted photochemical oxygen reduction to hydrogen peroxide (H 2O 2). EES CATALYSIS 2024; 2:262-275. [PMID: 38222062 PMCID: PMC10782808 DOI: 10.1039/d3ey00256j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 01/16/2024]
Abstract
Hydrogen peroxide (H2O2) is a valuable green oxidant with a wide range of applications. Furthermore, it is recognized as a possible future energy carrier achieving safe operation, storage and transportation. The photochemical production of H2O2 serves as a promising alternative to the waste- and energy-intensive anthraquinone process. Following the 12 principles of Green Chemistry, we demonstrate a facile and general approach to sustainable catalyst development utilizing earth-abundant iron and biobased sources only. We developed several iron oxide (FeOx) nanoparticles (NPs) for successful photochemical oxygen reduction to H2O2 under visible light illumination (445 nm). Achieving a selectivity for H2O2 of >99%, the catalyst material could be recycled for up to four consecutive rounds. An apparent quantum yield (AQY) of 0.11% was achieved for the photochemical oxygen reduction to H2O2 with visible light (445 nm) at ambient temperatures and pressures (9.4-14.8 mmol g-1 L-1). Reaching productivities of H2O2 of at least 1.7 ± 0.3 mmol g-1 L-1 h-1, production of H2O2 was further possible via sunlight irradiation and in seawater. Finally, a detailed mechanism has been proposed on the basis of experimental investigation of the catalyst's properties and computational results.
Collapse
Affiliation(s)
- Thomas Freese
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Jelmer T Meijer
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Maria B Brands
- van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Georgios Alachouzos
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Marc C A Stuart
- Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 7 9747AG Groningen The Netherlands
| | - Rafael Tarozo
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Dominic Gerlach
- Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Joost Smits
- Shell Global Solutions International BV Grasweg 31 1031 HW Amsterdam The Netherlands
| | - Petra Rudolf
- Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Joost N H Reek
- van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|