1
|
Li D, Huang J, Heng Y, Gao L, Wu Z, Zhou Q. Obtaining materials from local sources: surface modification engineering enabled substrates for water splitting. Chem Commun (Camb) 2025; 61:6882-6892. [PMID: 40261074 DOI: 10.1039/d5cc01311a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The preparation of an efficient electrode is the key to achieving efficient overall water-splitting for H2 production. Substrate surface modification engineering (SSME) provides a feasible method for preparing self-supported electrodes with high active site utilization, fast mass transport, and a simple fabrication process. This review summarizes and discusses the recent advances in preparing transition-metal-based HER/OER electrocatalysts via SSME. We first highlight the description and advantages of SSME, followed by the detailed introduction of electrocatalysts prepared via the SSME, such as hydroxides, oxyhydroxides, chalcogenides, phosphides, and borides. Finally, we provide the challenges and perspectives. We hope that this review will provide inspiration for researchers and stimulate the development of water splitting technology.
Collapse
Affiliation(s)
- Derun Li
- Institute for Applied Research in Public Health, School of Public Health, Nantong University, Nantong, 226019, Jiangsu, China.
- Hubei Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Hubei Normal University, 435002, Huangshi, China.
| | - Junjie Huang
- Institute for Applied Research in Public Health, School of Public Health, Nantong University, Nantong, 226019, Jiangsu, China.
| | - Yuan Heng
- Institute for Applied Research in Public Health, School of Public Health, Nantong University, Nantong, 226019, Jiangsu, China.
| | - Lihua Gao
- Institute for Applied Research in Public Health, School of Public Health, Nantong University, Nantong, 226019, Jiangsu, China.
| | - Zuoxu Wu
- Hubei Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Hubei Normal University, 435002, Huangshi, China.
| | - Qingwen Zhou
- Institute for Applied Research in Public Health, School of Public Health, Nantong University, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
2
|
Abner S, Chen A. Nanostructured cobalt/copper catalysts for efficient electrochemical carbon dioxide reduction. NANOSCALE 2024; 16:12967-12981. [PMID: 38899409 DOI: 10.1039/d4nr00909f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The search for an efficient and stable catalyst for the electrochemical reduction of CO2 to value-added chemicals is especially critical for lowering the atmospheric CO2 concentration. In this study, self-supported cobalt/copper nanostructured catalysts were designed, where the influences of the elemental composition and acid-etching on their efficiency towards the CO2 reduction reaction were studied. The developed Co/Cu catalysts showed superb catalytic activity with a low onset potential at -0.2 V vs. RHE. Gas and liquid product analysis revealed that formate and CO were the main products. It was observed that lower reductive potentials were favourable for formate production, while higher reductive potentials were more favourable for CO formation. In situ electrochemical FTIR studies were further conducted to gain insight into the CO2 reduction mechanism. The novel synthetic procedure reported in this study leads to promising electrocatalysts with high efficiencies for the conversion of CO2 into valuable products.
Collapse
Affiliation(s)
- Sharon Abner
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2 W1, Canada.
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2 W1, Canada.
| |
Collapse
|
3
|
He Q, Han L, Tao K. Oxygen vacancy modulated Fe-doped Co 3O 4 hollow nanosheet arrays for efficient oxygen evolution reaction. Chem Commun (Camb) 2024; 60:1116-1119. [PMID: 38189977 DOI: 10.1039/d3cc05581g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Herein, Fe-doped Co3O4 hollow nanosheet arrays with rich oxygen vacancies (Vo-Fe-Co3O4) are constructed using a facile strategy. Benefiting from the compositional and structural superiorities, Vo-Fe-Co3O4 exhibits a remarkable OER overpotential of 231 mV at 10 mA cm-2 and a Tafel slope of 57.45 mV dec-1 in an alkaline medium.
Collapse
Affiliation(s)
- Qianyun He
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Lei Han
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Kai Tao
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
4
|
Maciulis V, Ramanaviciene A, Plikusiene I. Recent Advances in Synthesis and Application of Metal Oxide Nanostructures in Chemical Sensors and Biosensors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12244413. [PMID: 36558266 PMCID: PMC9783830 DOI: 10.3390/nano12244413] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 05/31/2023]
Abstract
Nanostructured materials formed from metal oxides offer a number of advantages, such as large surface area, improved mechanical and other physical properties, as well as adjustable electronic properties that are important in the development and application of chemical sensors and biosensor design. Nanostructures are classified using the dimensions of the nanostructure itself and their components. In this review, various types of nanostructures classified as 0D, 1D, 2D, and 3D that were successfully applied in chemical sensors and biosensors, and formed from metal oxides using different synthesis methods, are discussed. In particular, significant attention is paid to detailed analysis and future prospects of the synthesis methods of metal oxide nanostructures and their integration in chemical sensors and biosensor design.
Collapse
Affiliation(s)
- Vincentas Maciulis
- State Research Institute Centre for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
- Nanotechnas–Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- Nanotechnas–Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Ieva Plikusiene
- State Research Institute Centre for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
- Nanotechnas–Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
5
|
Recent Trends in Electrochemical Catalyst Design for Hydrogen Evolution, Oxygen Evolution, and Overall Water Splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|