1
|
Lachguar A, Neumann T, Pichugov AV, Jeanneau E, Veyre L, Thieuleux C, Camp C. Catalytic H/D exchange of (hetero)arenes with early-late polyhydride heterobimetallic complexes: impact of transition metal pairs. Dalton Trans 2025; 54:3804-3811. [PMID: 39873487 DOI: 10.1039/d4dt03171g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Metal-catalyzed hydrogen isotope exchange (HIE) has become a valuable method for incorporating deuterium and tritium into organic molecules, with applications in a wide range of scientific fields. This study explores the role of transition metal cooperativity in enhancing catalytic hydrogen/deuterium (H/D) exchange using early-late heterobimetallic polyhydride (ELHB) complexes. A series of four ELHB complexes, of general formula [M(CH2tBu)3(H)xM'Cp*], combining early transition metals (M = Hf, Ta) with late metals (M' = Ir, Os), were synthesized and evaluated for their catalytic activity in HIE of (hetero)arenes. Hafnium-iridium and hafnium-osmium complexes showed a clear improvement in catalytic efficiency and reaction rate over monometallic analogues, suggestive of metal-metal synergy. Conversely, the tantalum-based heterobimetallic complexes showed lower catalytic performance, revealing that not all metal combinations are equally effective. These results underline the importance of careful metal selection to optimize transition metal cooperativity, and open up new possibilities for the design of more efficient H/D exchange catalysts.
Collapse
Affiliation(s)
- Abdelhak Lachguar
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2 M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Till Neumann
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2 M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Andrey V Pichugov
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2 M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Erwann Jeanneau
- Centre de Diffractométrie Henri Longchambon, Universite Claude Bernard Lyon 1, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Laurent Veyre
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2 M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Chloé Thieuleux
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2 M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Clément Camp
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2 M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| |
Collapse
|
2
|
Stadler B, Gorgas N, Elliott SJ, Crimmin MR. Dyotropic Rearrangement of an Iron-Aluminium Complex. Angew Chem Int Ed Engl 2024; 63:e202408257. [PMID: 39011600 DOI: 10.1002/anie.202408257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Ligand exchange processes at metal complexes underpin their reactivity and catalytic applications. While mechanisms of ligand exchange at single site complexes are well established, occurring through textbook associative, dissociative and interchange mechanisms, those involving heterometallic complexes are less well developed. Here we report the reactions of a well-defined Fe-Al dihydride complex with exogenous ligands (CO and CNR, R=Me, tBu, Xyl=2,6-Me2C6H3). Based on DFT calculations we suggest that these reactions occur through a dyotropic rearrangement, this involves initial coordination of the exogenous ligand at Al followed by migration to Fe, with simultaneous migration of a hydride ligand from Fe to Al. Such processes are rare for heterometallic complexes. We study the bonding and mechanism of the dyotropic rearrangement through in-depth computational analysis (NBO, IBOs, CLMO analysis, QTAIM, NCIplot, IGMH), shedding new light on how the electronic structure of the heterometallic core responds to the migration of ligands between metal sites. The dyotropic rearrangement fundamentally changes the nature of the hydride ligands, exposing new nucleophilic reactivity as evidenced by insertion reactions with CO2, isocyanates, as well as isocyanides.
Collapse
Affiliation(s)
- Benedek Stadler
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, Imperial College London, Shepherds Bush, 82 Wood Lane, W12 0BZ, London, U.K
| | - Nikolaus Gorgas
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, Imperial College London, Shepherds Bush, 82 Wood Lane, W12 0BZ, London, U.K
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060, Vienna, Austria
| | - Stuart J Elliott
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, Imperial College London, Shepherds Bush, 82 Wood Lane, W12 0BZ, London, U.K
| | - Mark R Crimmin
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, Imperial College London, Shepherds Bush, 82 Wood Lane, W12 0BZ, London, U.K
| |
Collapse
|
3
|
Subasinghe SMS, Mankad NP. Lessons from recent theoretical treatments of Al-M bonds (M = Fe, Cu, Ag, Au) that capture CO 2. Dalton Trans 2024; 53:13709-13715. [PMID: 39106074 DOI: 10.1039/d4dt02018a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Complexes with Al-M bonds (M = transition metal) have emerged as platforms for discovering new reaction chemistry either through cooperative bond activation behaviour of the heterobinuclear unit or by modifying the properties of the M site through its interaction with the Al centre. Therefore, elucidating the nature of Al-M bonding is critical to advancing this research area and typically involves careful theoretical modelling. This Frontier article reviews selected recent case studies that included theoretical treatments of Al-M bonds, specifically highlighting complexes capable of cooperative CO2 activation and focusing on extracting lessons particular to the Al-M sub-field that will inform future studies with theoretical/computational components.
Collapse
Affiliation(s)
| | - Neal P Mankad
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
4
|
Lynch JR, Kennedy AR, Barker J, Mulvey RE. Modification of a Common β-diketiminate NacNac Framework via Sequential Lithiation and Small Molecule Insertion. Chemistry 2024; 30:e202303373. [PMID: 38032346 PMCID: PMC11497280 DOI: 10.1002/chem.202303373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
A widely utilised class of ligands in synthesis and catalysis, β-diketiminate (BDI) or NacNac compounds were initially considered innocent in the sense that they remained intact in all their applications. That changed when the γ-C-H unit of their NCCCN backbone was found to engage in reactions with electrophiles. Here, we show that this special reactivity can be used advantageously to prepare tripodal modifications of the common NacNac ligand derived from 2,6-diisopropylphenyl-β-methyldiketimine [NacNacH (Me, Dipp)]. Lithiation to give NacNacLi, followed by reactions with isocyanates, isothiocyanates and a carbodiimide, have afforded a series of tripodal NacNac variants having N,N,N,O; N,N,N,S; or N,N,N,N potential dentation sites, many of which have been crystallographically characterised. Distinct ligating modes of these new ligands have been elucidated through the crystal structures of their lithiated derivatives.
Collapse
Affiliation(s)
- Jennifer R. Lynch
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Alan R. Kennedy
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Jim Barker
- Innospec Ltd.Oil Sites RoadEllesmere PortCheshireCH65 4EYUK
| | - Robert E. Mulvey
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| |
Collapse
|
5
|
Gorgas N, Stadler B, White AJP, Crimmin MR. Vinylic C-H Activation of Styrenes by an Iron-Aluminum Complex. J Am Chem Soc 2024; 146:4252-4259. [PMID: 38303600 PMCID: PMC10870711 DOI: 10.1021/jacs.3c14281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
The oxidative addition of sp2 C-H bonds of alkenes to single-site transition-metal complexes is complicated by the competing π-coordination of the C═C double bond, limiting the examples of this type of reactivity and onward applications. Here, we report the C-H activation of styrenes by a well-defined bimetallic Fe-Al complex. These reactions are highly selective, resulting in the (E)-β-metalation of the alkene. For this bimetallic system, alkene binding appears to be essential for the reaction to occur. Experimental and computational insights suggest an unusual reaction pathway in which a (2 + 2) cycloaddition intermediate is directly converted into the hydrido vinyl product via an intramolecular sp2 C-H bond activation across the two metals. The key C-H cleavage step proceeds through a highly asynchronous transition state near the boundary between a concerted and a stepwise mechanism influenced by the resonance stabilization ability of the aryl substituent. The metalated alkenes can be further functionalized, which has been demonstrated by the (E)-selective phosphination of the employed styrenes.
Collapse
Affiliation(s)
- Nikolaus Gorgas
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, Shepherds Bush, London W12 0BZ, U.K.
- Institute
of Applied Synthetic Chemistry, Vienna University
of Technology, Getreidemarkt
9, 1060 Vienna, Austria
| | - Benedek Stadler
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, Shepherds Bush, London W12 0BZ, U.K.
| | - Andrew J. P. White
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, Shepherds Bush, London W12 0BZ, U.K.
| | - Mark R. Crimmin
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, Shepherds Bush, London W12 0BZ, U.K.
| |
Collapse
|
6
|
Lachguar A, Pichugov AV, Neumann T, Dubrawski Z, Camp C. Cooperative activation of carbon-hydrogen bonds by heterobimetallic systems. Dalton Trans 2024; 53:1393-1409. [PMID: 38126396 PMCID: PMC10804807 DOI: 10.1039/d3dt03571a] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
The direct activation of C-H bonds has been a rich and active field of organometallic chemistry for many years. Recently, incredible progress has been made and important mechanistic insights have accelerated research. In particular, the use of heterobimetallic complexes to heterolytically activate C-H bonds across the two metal centers has seen a recent surge in interest. This perspective article aims to orient the reader in this fast moving field, highlight recent progress, give design considerations for further research and provide an optimistic outlook on the future of catalytic C-H functionalization with heterobimetallic complexes.
Collapse
Affiliation(s)
- Abdelhak Lachguar
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Andrey V Pichugov
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Till Neumann
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Zachary Dubrawski
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Clément Camp
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| |
Collapse
|
7
|
Fernández S, Fernando S, Planas O. Cooperation towards nobility: equipping first-row transition metals with an aluminium sword. Dalton Trans 2023; 52:14259-14286. [PMID: 37740303 DOI: 10.1039/d3dt02722h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The exploration for noble metals substitutes in catalysis has become a highly active area of research, driven by the pursuit of sustainable chemical processes. Although the utilization of base metals holds great potential as an alternative, their successful implementation in predictable catalytic processes necessitates the development of appropriate ligands. Such ligands must be capable of controlling their intricate redox chemistry and promote two-electron events, thus mimicking well-established organometallic processes in noble metal catalysis. While numerous approaches for infusing nobility to base metals have been explored, metal-ligand cooperation has garnered significant attention in recent years. Within this context, aluminium-based ligands offer interesting features to fine-tune the activity of metal centres, but their application in base metal catalysis remains largely unexplored. This perspective seeks to highlight the most recent breakthroughs in the reactivity of heterobimetallic aluminium-base-metal complexes, while also showcasing their potential to develop novel and predictable catalytic transformations. By turning the spotlight on such heterobimetallic species, we aim to inspire chemists to explore aluminium-base-metal species and expand the range of their applications as catalysts.
Collapse
Affiliation(s)
- Sergio Fernández
- Queen Mary University of London, School of Physical and Chemical Sciences, Department of Chemistry, Mile End Road, London E1 4NS, UK.
| | - Selwin Fernando
- Queen Mary University of London, School of Physical and Chemical Sciences, Department of Chemistry, Mile End Road, London E1 4NS, UK.
| | - Oriol Planas
- Queen Mary University of London, School of Physical and Chemical Sciences, Department of Chemistry, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
8
|
Stadler B, Gorgas N, White AJP, Crimmin MR. Double Deprotonation of CH 3 CN by an Iron-Aluminium Complex. Angew Chem Int Ed Engl 2023; 62:e202219212. [PMID: 36799769 PMCID: PMC10946928 DOI: 10.1002/anie.202219212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/18/2023]
Abstract
Herein we present the first double deprotonation of acetonitrile (CH3 CN) using two equivalents of a bimetallic iron-aluminium complex. The products of this reaction contain an exceeding simple yet rare [CHCN]2- dianion moiety that bridges two metal fragments. DFT calculations suggest that the bonding to the metal centres occurs through heavily polarised covalent interactions. Mechanistic studies reveal the intermediacy of a monomeric [CH2 CN]- complex, which has been characterised in situ. Our findings provide an important example in which a bimetallic metal complex achieves a new type of reactivity not previously encountered with monometallic counterparts.[1, 2] The isolation of a [CHCN]2- dianion through simple deprotonation of CH3 CN also offers the possibility of establishing a broader chemistry of this motif.
Collapse
Affiliation(s)
- Benedek Stadler
- Department of ChemistryImperial College London White CityLondonW12 0BZUK
| | - Nikolaus Gorgas
- Department of ChemistryImperial College London White CityLondonW12 0BZUK
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 91060ViennaAustria
| | - Andrew J. P. White
- Department of ChemistryImperial College London White CityLondonW12 0BZUK
| | - Mark R. Crimmin
- Department of ChemistryImperial College London White CityLondonW12 0BZUK
| |
Collapse
|
9
|
Stadler B, Gorgas N, White AJP, Crimmin MR. Double Deprotonation of CH 3CN by an Iron-Aluminium Complex. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202219212. [PMID: 38516673 PMCID: PMC10952947 DOI: 10.1002/ange.202219212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Indexed: 03/23/2024]
Abstract
Herein we present the first double deprotonation of acetonitrile (CH3CN) using two equivalents of a bimetallic iron-aluminium complex. The products of this reaction contain an exceeding simple yet rare [CHCN]2- dianion moiety that bridges two metal fragments. DFT calculations suggest that the bonding to the metal centres occurs through heavily polarised covalent interactions. Mechanistic studies reveal the intermediacy of a monomeric [CH2CN]- complex, which has been characterised in situ. Our findings provide an important example in which a bimetallic metal complex achieves a new type of reactivity not previously encountered with monometallic counterparts.[1, 2] The isolation of a [CHCN]2- dianion through simple deprotonation of CH3CN also offers the possibility of establishing a broader chemistry of this motif.
Collapse
Affiliation(s)
- Benedek Stadler
- Department of ChemistryImperial College London White CityLondonW12 0BZUK
| | - Nikolaus Gorgas
- Department of ChemistryImperial College London White CityLondonW12 0BZUK
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 91060ViennaAustria
| | - Andrew J. P. White
- Department of ChemistryImperial College London White CityLondonW12 0BZUK
| | - Mark R. Crimmin
- Department of ChemistryImperial College London White CityLondonW12 0BZUK
| |
Collapse
|