1
|
Gopalakrishnan M, Kao-ian W, Rittiruam M, Praserthdam S, Praserthdam P, Limphirat W, Nguyen MT, Yonezawa T, Kheawhom S. 3D Hierarchical MOF-Derived Defect-Rich NiFe Spinel Ferrite as a Highly Efficient Electrocatalyst for Oxygen Redox Reactions in Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11537-11551. [PMID: 38361372 PMCID: PMC11184548 DOI: 10.1021/acsami.3c17789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
The strategy of defect engineering is increasingly recognized for its pivotal role in modulating the electronic structure, thereby significantly improving the electrocatalytic performance of materials. In this study, we present defect-enriched nickel and iron oxides as highly active and cost-effective electrocatalysts, denoted as Ni0.6Fe2.4O4@NC, derived from NiFe-based metal-organic frameworks (MOFs) for oxygen reduction reactions (ORR) and oxygen evolution reactions (OER). XANES and EXAFS confirm that the crystals have a distorted structure and metal vacancies. The cation defect-rich Ni0.6Fe2.4O4@NC electrocatalyst exhibits exceptional ORR and OER activities (ΔE = 0.68 V). Mechanistic pathways of electrochemical reactions are studied by DFT calculations. Furthermore, a rechargeable zinc-air battery (RZAB) using the Ni0.6Fe2.4O4@NC catalyst demonstrates a peak power density of 187 mW cm-2 and remarkable long-term cycling stability. The flexible solid-state ZAB using the Ni0.6Fe2.4O4@NC catalyst exhibits a power density of 66 mW cm-2. The proposed structural design strategy allows for the rational design of electronic delocalization of cation defect-rich NiFe spinel ferrite attached to ultrathin N-doped graphitic carbon sheets in order to enhance active site availability and facilitate mass and electron transport.
Collapse
Affiliation(s)
- Mohan Gopalakrishnan
- Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wathanyu Kao-ian
- Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Meena Rittiruam
- Center
of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok 10330, Thailand
- High-Performance
Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic
Reaction Engineering (CECC), Chulalongkorn
University, Bangkok 10330, Thailand
- Rittiruam
Research Group, Bangkok 10330, Thailand
| | - Supareak Praserthdam
- Center
of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok 10330, Thailand
- High-Performance
Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic
Reaction Engineering (CECC), Chulalongkorn
University, Bangkok 10330, Thailand
| | - Piyasan Praserthdam
- Center
of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok 10330, Thailand
| | - Wanwisa Limphirat
- Synchrotron
Light Research Institute, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Mai Thanh Nguyen
- Division
of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Tetsu Yonezawa
- Division
of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Soorathep Kheawhom
- Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Bio-Circular-Green-economy
Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence on Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Wang G, Gao H, Yan Z, Li L, Li Q, Fan J, Zhao Y, Deng N, Kang W, Cheng B. Copper nanodot-embedded nitrogen and fluorine co-doped porous carbon nanofibers as advanced electrocatalysts for rechargeable zinc-air batteries. J Colloid Interface Sci 2023; 647:163-173. [PMID: 37247480 DOI: 10.1016/j.jcis.2023.05.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Porous carbon-based electrocatalysts for cathodes in zinc-air batteries (ZABs) are limited by their low catalytic activity and poor electronic conductivity, making it difficult for them to be quickly commercialized. To solve these problems of ZABs, copper nanodot-embedded N, F co-doped porous carbon nanofibers (CuNDs@NFPCNFs) are prepared to enhance the electronic conductivity and catalytic activity in this study. The CuNDs@NFPCNFs exhibit excellent oxygen reduction reaction (ORR) performance based on experimental and density functional theory (DFT) simulation results. The copper nanodots (CuNDs) and N, F co-doped carbon nanofibers (NFPCNFs) synergistically enhance the electrocatalytic activity. The CuNDs in the NFPCNFs also enhance the electronic conductivity to facilitate electron transfer during the ORR. The open porous structure of the NFPCNFs promotes the fast diffusion of dissolved oxygen and the formation of abundant gas-liquid-solid interfaces, leading to enhanced ORR activity. Finally, the CuNDs@NFPCNFs show excellent ORR performance, maintaining 92.5% of the catalytic activity after a long-term ORR test of 20000 s. The CuNDs@NFPCNFs also demonstrate super stable charge-discharge cycling for over 400 h, a high specific capacity of 771.3 mAh g-1 and an excellent power density of 204.9 mW cm-2 as a cathode electrode in ZABs. This work is expected to provide reference and guidance for research on the mechanism of action of metal nanodot-enhanced carbon materials for ORR electrocatalyst design.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Hongjing Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Zirui Yan
- School of Physics Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Lei Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Quanxiang Li
- Institute for Frontier Materials, Deakin University, Geelong and Waurn Ponds, Victoria 3216, Australia
| | - Jie Fan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Yixia Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| |
Collapse
|