1
|
Xie W, Li Z, Xu J. Highly Stereoselective [2 + 4] Annulation of Phosphenes and Enones with β-Electron-Donating Groups. Org Lett 2025; 27:3320-3325. [PMID: 40119843 DOI: 10.1021/acs.orglett.5c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
Enones with β-electron-donating groups can exist in their zwitterionic resonance forms, which favor nucleophilic attack to phosphenes generated from phosphoryl (aryl)diazomethanes under blue light irradiation to yield zwitterionic intermediates. The intermediates cyclize to afford highly stereoselective trans-3,4-dihydro-1,2-oxaphosphinine 2-oxides in good to excellent yields. In the cyclic transition state of the final cyclization, the stereoelectronic effect and the Coulomb force control the high stereoselectivity. The electron-donating groups of enones play double roles in both nucleophilic attack and cyclization. The reaction features readily available starting materials, high atom-economy, no catalyst, a fast reaction rate, broad functional group-tolerance and substrate scope, high yields and stereoselectivity, and mild conditions.
Collapse
Affiliation(s)
- Wenlai Xie
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziming Li
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Abdiyan Mobarakeh F, Khosravi H, Akbari A, Rominger F, Balalaie S. Transition-Metal-Free Radical Approach for the Synthesis of Isothiocyanates by Pyridinium 1,4-Zwitterionic Thiolates as a Sulfur Source. J Org Chem 2025; 90:1912-1921. [PMID: 39874217 DOI: 10.1021/acs.joc.4c02593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Herein, we disclose a novel, mild, transition-metal-free approach to synthesizing diversely functionalized isothiocyanates from the corresponding isocyanide precursors, achieving high to excellent yields (up to 97%). The current method sheds light on the reactivity of pyridinium 1,4-zwitterionic thiolates as an unprecedented sulfur source strikingly distinct from their previously known reactivity in ionic annulation reactions, showcasing an innovative approach to organic synthesis.
Collapse
Affiliation(s)
- Fatemeh Abdiyan Mobarakeh
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697-64499, Iran
| | - Hormoz Khosravi
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697-64499, Iran
| | - Alireza Akbari
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697-64499, Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 271, 69120 Heidelberg, Germany
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697-64499, Iran
| |
Collapse
|
3
|
Wang Y, Tong W, Xu J. Construction of 4-Vinyl-1,2-oxaphospholane 2-Oxides from Vinyloxiranes and Phosphoryl Diazomethanes. Org Lett 2025; 27:165-172. [PMID: 39715574 DOI: 10.1021/acs.orglett.4c04105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Various 4-vinyl-1,2-oxaphospholane 2-oxides are prepared in good to excellent yields from vinyloxiranes and in situ-generated phosphenes from phosphoryl diazomethanes via the phosphene-induced ring expansion of oxiranes. The reaction is a novel and expeditious strategy for the synthesis of 1,2-oxaphospholane 2-oxide derivatives, featuring ring expansion of readily available starting materials, high atom economy, no catalyst, a fast reaction rate, broad functional group tolerance, high yields, and separable diastereomers.
Collapse
Affiliation(s)
- Yinqiao Wang
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenlong Tong
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Xiao Y, Wu F, Tang L, Zhang X, Wei M, Wang G, Feng JJ. Divergent Synthesis of Sulfur-Containing Bridged Cyclobutanes by Lewis Acid Catalyzed Formal Cycloadditions of Pyridinium 1,4-Zwitterionic Thiolates and Bicyclobutanes. Angew Chem Int Ed Engl 2024; 63:e202408578. [PMID: 38818620 DOI: 10.1002/anie.202408578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Bridged cyclobutanes and sulfur heterocycles are currently under intense investigation as building blocks for pharmaceutical drug design. Two formal cycloaddition modes involving bicyclobutanes (BCBs) and pyridinium 1,4-zwitterionic thiolate derivatives were described to rapidly expand the chemical space of sulfur-containing bridged cyclobutanes. By using Ni(ClO4)2 as the catalyst, an uncommon higher-order (5+3) cycloaddition of BCBs with quinolinium 1,4-zwitterionic thiolate was achieved with broad substrate scope under mild reaction conditions. Furthermore, the first Lewis acid-catalyzed asymmetric polar (5+3) cycloaddition of BCB with pyridazinium 1,4-zwitterionic thiolate was accomplished. In contrast, pyridinium 1,4-zwitterionic thiolates undergo an Sc(OTf)3-catalyzed formal (3+3) reaction with BCBs to generate thia-norpinene products, which represent the initial instance of synthesizing 2-thiabicyclo[3.1.1]heptanes (thia-BCHeps) from BCBs. Moreover, we have successfully used this (3+3) protocol to rapidly prepare thia-BCHeps-substituted analogues of the bioactive molecule Pitofenone. Density functional theory (DFT) computations imply that kinetic factors govern the (5+3) cycloaddition reaction between BCB and quinolinium 1,4-zwitterionic thiolate, whereas the (3+3) reaction involving pyridinium 1,4-zwitterionic thiolates is under thermodynamic control.
Collapse
Affiliation(s)
- Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Xu Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P.R. China
| | - Mengran Wei
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Guoqiang Wang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
5
|
Xu J, Yang RY, Xu B. Chameleonic Reactivity of Imidoyl Sulfoxonium Ylides: Access to Functionalized Pyrroles and Dihydro-pyridines. Org Lett 2024; 26:62-67. [PMID: 38170926 DOI: 10.1021/acs.orglett.3c03625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We have found a chameleonic reactivity of imidoyl sulfoxonium ylides. On the one hand, imidoyl sulfoxonium ylides react with electron-deficient reagents, such as alkynyl esters, to lead to the formation of 1,2-dihydro-pyridines. The methyl group attached to the sulfur atom acts as a methylene donor. On the other hand, imidoyl sulfoxonium ylides react with pyridinium 1,4-zwitterionic thiolates, which leads to the formation of functionalized pyrroles. Both transformations feature mild reaction conditions and good functional group tolerance.
Collapse
Affiliation(s)
- Jingnan Xu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Ren-Yin Yang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
6
|
Luo YC, Wang Y, Shi R, Zhang XG, Zhang HH, Xu PF. Photoredox Catalyzed [3 + 2]-Annulation Reaction of Pyridinium 1,4-Zwitterionic Thiolates with Alkenes: Synthesis of Dihydrothiophenes. Org Lett 2023; 25:6105-6109. [PMID: 37584499 DOI: 10.1021/acs.orglett.3c02068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Pyridinium 1,4-zwitterionic thiolates are usually used to develop ionic annulation reactions. However, radical reactions were rare. We developed a photoredox catalyzed [3 + 2]-annulation reaction of pyridinium 1,4-zwitterionic thiolates with alkenes, disclosed the new reactivity of pyridinium 1,4-zwitterionic thiolate, and provided a new synthetic method for dihydrothiophene.
Collapse
Affiliation(s)
- Yong-Chun Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P. R. China
| | - Yang Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Run Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xu-Gang Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Huan-Huan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|