1
|
Yang D, Liu X, Ma J, Cui B, Wang Y, Xu J, Zhang Y, Ding H, Wang D, Liu Q, Zhang F. Probing Single-Cell Adhesion Kinetics and Nanomechanical Force with Surface Plasmon Resonance Imaging. ACS NANO 2025; 19:2651-2664. [PMID: 39788128 DOI: 10.1021/acsnano.4c14578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Single cell adhesion plays a significant role in numerous physiological and pathological processes. Real-time imaging and quantification of single cell adhesion kinetics and corresponding cell-substrate mechanical interaction forces are crucial for elucidating the cellular mechanisms involved in tissue formation, immune responses, and cancer metastasis. Here, we present the development of a plasmonic-based nanomechanical sensing and imaging system (PNMSi) for the real-time measurement of single cell adhesion kinetics and associated nanomechanical forces with plasmonic tracking and monitoring of cell-substrate interactions and the accompanying nanoscale fluctuations. Both the slow binding and dynamic nanomechanical interaction processes were tracked and analyzed with a thermodynamic model to determine the adhesion kinetic parameters and quantity the mechanical forces. To demonstrate the capabilities of the PNMSi platform, we examined single cell binding interactions across four different surface modifications, and obvious alterations in binding kinetics and corresponding nanomechanical forces were observed, influenced by surface charges and interfacial hydrophilicity. Additionally, we investigated changes in mechanical interaction forces of single cells during cytoskeleton modification, revealing the cross-linking-induced cell adhesion changes. Furthermore, to demonstrate the application capability of the system, the adhesion profiling of primary tumor and metastatic tumor cells was explored, and obvious alterations were observed in the kinetic forces of single cell-substrate interaction. The PNMSi platform facilitates high-throughput single cell adhesion imaging and the quantification of adhesion interaction kinetics and nanomechanical forces with high sensitivity and serves as a promising platform for identifying biomarkers for tumor metastasis and for screening potential therapeutic agents.
Collapse
Affiliation(s)
- Dehong Yang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Xiaoyin Liu
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Jinbiao Ma
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Baiqi Cui
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Yunxiao Wang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Jiahao Xu
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Yunrui Zhang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Haiying Ding
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310005, China
| | - Di Wang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou 311100, China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Fenni Zhang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
2
|
Yang D, Fang Y, Liu X, Ma J, Xu J, Dong H, Ding H, Wang D, Liu Q, Zhang F. Lensless On-Chip Chemiluminescence Imaging for High-Throughput Single-Cell Heterogeneity Analysis. NANO LETTERS 2024; 24:14875-14883. [PMID: 39512117 DOI: 10.1021/acs.nanolett.4c04487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
High-throughput single-cell heterogeneity imaging and analysis is essential for understanding complex biological systems and for advancing personalized precision disease diagnosis and treatment. Here, we present a miniaturized lensless chemiluminescence chip for high-throughput single-cell functional imaging with subcellular resolution. With the sensitive chemiluminescence sensing and wide field of view of contact lensless imaging, we demonstrated the chemiluminescent imaging of over 1000 single cells, and their membrane glycoprotein and the high-throughput single-cell heterogeneity of membrane protein imaging were examined for precision analysis. Furthermore, the functional adhesion and heterogeneity of single live cells were imaged and explored. This miniaturized lensless on-chip CL-CMOS imaging platform enables high-throughput single-cell imaging and analysis with high sensitivity and subcellular resolution, providing new techniques for the cellular study of biological heterogeneity and has potential application in precision disease diagnosis and treatment at the point-of-care settings.
Collapse
Affiliation(s)
- Dehong Yang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ying Fang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaoyin Liu
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jinbiao Ma
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiahao Xu
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Dong
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Haiying Ding
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310005, China
| | - Di Wang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Fenni Zhang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
3
|
Huang Y, Chen T, Chen X, Chen X, Zhang J, Liu S, Lu M, Chen C, Ding X, Yang C, Huang R, Song Y. Decoding Biomechanical Cues Based on DNA Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310330. [PMID: 38185740 DOI: 10.1002/smll.202310330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/18/2023] [Indexed: 01/09/2024]
Abstract
Biological systems perceive and respond to mechanical forces, generating mechanical cues to regulate life processes. Analyzing biomechanical forces has profound significance for understanding biological functions. Therefore, a series of molecular mechanical techniques have been developed, mainly including single-molecule force spectroscopy, traction force microscopy, and molecular tension sensor systems, which provide indispensable tools for advancing the field of mechanobiology. DNA molecules with a programmable structure and well-defined mechanical characteristics have attached much attention to molecular tension sensors as sensing elements, and are designed for the study of biomechanical forces to present biomechanical information with high sensitivity and resolution. In this work, a comprehensive overview of molecular mechanical technology is presented, with a particular focus on molecular tension sensor systems, specifically those based on DNA. Finally, the future development and challenges of DNA-based molecular tension sensor systems are looked upon.
Collapse
Affiliation(s)
- Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ting Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaodie Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ximing Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Sinong Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Menghao Lu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chong Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiangyu Ding
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ruiyun Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
4
|
Zhang J, Hao L, Chao J, Wang L, Su S. Enhanced electrochemiluminescence imaging of single cell membrane proteins based on Co 3O 4 nanozyme catalysis. Chem Commun (Camb) 2023; 59:11736-11739. [PMID: 37703059 DOI: 10.1039/d3cc03484d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The development of enhanced strategies with excellent biocompatibility is critical for electrochemiluminescence (ECL) imaging of single cells. Here, we report an ECL imaging technique for a single cell membrane protein based on a Co3O4 nanozyme catalytic enhancement strategy. Due to the remarkable catalytic performance of Co3O4 nanozymes, H2O2 can be efficiently decomposed into reactive oxygen radicals, and the reaction with L012 was enhanced, resulting in stronger ECL emission. The anti-carcinoembryonic antigen (CEA) was coupled with nanozyme particles to construct a probe that specifically recognized the overexpressed CEA on the MCF-7 cell membrane. According to the locally enhanced visualized luminescence, the rapid ECL imaging of a single cell membrane protein was eventually realized. Accordingly, Co3O4 nanozymes with highly efficient activity will provide new insights into ECL imaging analysis of more biological small molecules and proteins.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China.
| | - Jie Chao
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Shao Su
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
5
|
Shi J, Han D, Feng Z, Jiang D, Jiang D. Electrochemiluminescence imaging of a membrane carcinoembryonic antigen at single tissue sections. Analyst 2023; 148:2511-2517. [PMID: 37191134 DOI: 10.1039/d3an00187c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Histopathological molecular testing of tissue sections is an essential step in tumor diagnosis; however, the commonly used immunohistochemical methods have problems such as low specificity and the subjective bias of the observer. Here, we report an electrochemiluminescence (ECL) imaging method to detect a membrane carcinoembryonic antigen (CEA) at the single tissue sections of cancer patients. By permeabilizing the tissue attached to a glassy carbon electrode, Ru(bpy)32+ tagged at the membrane CEA of the tissue could electrochemically react with TPrA in solution to emit ECL that has near-zero background and an extremely high signal-to-background ratio. Using the established ECL method, the expression differences and distribution characteristics of the CEA protein in the carcinoma and paracancerous tissues of pancreatic ductal carcinoma (PDAC) and lung adenocarcinoma (LUAD) patients are investigated. The images reveal that CEA proteins are mostly distributed in the acini and surrounding areas both in PDAC and LUAD tissues. Therefore, the presented approach could be able to provide a new molecular recognition method for the diagnosis of adenocarcinoma and other tumors.
Collapse
Affiliation(s)
- Junwei Shi
- Department of Respiratory Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| | - Dongni Han
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Zengyu Feng
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Depeng Jiang
- Department of Respiratory Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|