1
|
Peng W, Zhang W, Lu Y, Li W, He J, Zhou D, Hu W, Zhong X. Mo-doping and construction of the heterostructure between NiFe LDH and NiS x co-trigger the activity enhancement for overall water splitting. J Colloid Interface Sci 2024; 664:980-991. [PMID: 38508033 DOI: 10.1016/j.jcis.2024.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
To reduce the preparation cost of high-purity hydrogen, it is necessary to search suitable non-precious metal catalysts with high activity and robust stability. Herein, two means (heteroatom-doping and the heterostructure construction) were adopted together to improve the dual-function activity of NiFe LDH which was widely used in water electrolysis. Mo doped NiFe LDH nanoflowers were firstly generated by hydrothermal reaction, and then NiSx was modified on the petals via electrodeposition. Finally, the obtained NF/Mo-NiFe LDH/NiSx with large electrochemical active area exhibits the expected electrochemical performance with the overpotential at 100 mA cm-2 of 169 and 249 mV for hydrogen evolution (HER) and oxygen evolution reaction (OER) respectively. Assembling NF/Mo-NiFe LDH/NiSx into a two-electrode device for the integral water electrolysis, it just requires a cell voltage of 1.69 V to drive a current density of 100 mA cm-2, and keeps stable after 50-hour continuous operation in 1.0 M KOH. Mo-doping not only regulates the electronic structure of the transition metals and reduces the energy barrier of HER intermediates, but also facilitates the generation of reactive sites for OER. Meanwhile, the construction of heterointerface ensures the synergism between NiSx and Mo-NiFe LDH and accelerates the electron transfer across interfaces, thus enhancing the bifunctional performance.
Collapse
Affiliation(s)
- Wendi Peng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Wenting Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Yanli Lu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Wanping Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Jiao He
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Dan Zhou
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Wei Hu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| | - Xinxin Zhong
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
2
|
Bora HJ, Nath MP, Medhi PJ, Boruah PJ, Kalita P, Bailung H, Choudhury B, Sen Sarma N, Kalita A. Unveiling the Potential of Covalent Organic Framework Electrocatalyst for Enhanced Oxygen Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9751-9760. [PMID: 38642056 DOI: 10.1021/acs.langmuir.4c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
The potential for sustainable energy and carbon neutrality has expanded with the development of a highly active electrocatalyst for the oxygen evolution reaction (OER). Covalent Organic Frameworks (COF) have recently garnered attention because of their enormous potential in a number of cutting-edge application sectors, such as gas storage, sensors, fuel cells, and active catalytic supports. A simple and effective COF constructed and integrated by post-alteration plasma modification facilitates high electrocatalytic OER activity under alkaline conditions. Variations in parameters such as voltage and treatment duration have been employed to enhance the factor that demonstrates high OER performance. The overpotential and Tafel slope are the lowest of all when using an optimized parameter, such as plasma treatment for 30 min utilizing 6 kV of voltage, PT-30 COF, measuring 390 mV at a current density of 10 mA.cm-2 and 69 mV.dec-1, respectively, as compared to 652 mV and 235 mV.dec-1 for the Pristine-COF. Our findings provide a method for broadening the scope by post-functionalizing the parent framework for effective water splitting.
Collapse
Affiliation(s)
- Hridoy Jyoti Bora
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manash P Nath
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Palash Jyoti Medhi
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Palash Jyoti Boruah
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Parismita Kalita
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Heremba Bailung
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Department of Physics, Bodoland University, Kokrajhar, Assam 783370, India
| | - Biswajit Choudhury
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neelotpal Sen Sarma
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anamika Kalita
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Zhang X, Liao H, Tan P, Zhang Y, Zhou B, Liu M, Pan J. Voltage activation induced MoO 42- dissolution to enhance performance of iron doped nickel molybdate for oxygen evolution reaction. J Colloid Interface Sci 2024; 661:772-780. [PMID: 38325175 DOI: 10.1016/j.jcis.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Transition metal-based precatalysts are typically voltage-activated before electrochemical testing in the condition of alkaline oxygen evolution reaction. Nevertheless, the impact of voltage on the catalyst and the anion dissolution is frequently disregarded. In this study, Fe-doped NiMoO4 (Fe-NiMoO4) was synthesized as a precursor through a straightforward hydrothermal method, and MoFe-modified Ni (oxygen) hydroxide (MoFe-NiOxHy) was obtained via cyclic voltammetry (CV) activation. The effects of voltage on Fe-NiMoO4 and the dissolved inactive MoO42- ions in the process were examined in relation to OER performance. It has demonstrated that the crystallinity of the catalyst is reduced by voltage, thereby enhancing its electrocatalytic activity. The electron distribution state can be adjusted during the application of voltage, leading to the generation of additional active sites and an acceleration in the reaction rate. Additionally, MoO42- exhibits potential dependence during its dissolution. In the OER process, the dissolution of MoO42- enhances the reconstruction degree of Fe-NiMoO4 into the active substance and expedites the formation of active Ni(Fe)OOH. Hence, the optimized MoFe-NiOxHy exhibited exceptional electrocatalytic performance, with a current density of 100 mA cm-2 achieved at an overpotential of only 256 mV. This discovery contributes to a more comprehensive understanding of alkaline OER performance under the influence of applied voltage and the presence of inactive oxygen ions, offering a promising avenue for the development of efficient electrocatalysts.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, PR China
| | - Hanxiao Liao
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, PR China; School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Pengfei Tan
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, PR China.
| | - Yi Zhang
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, PR China
| | - Binhua Zhou
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, PR China
| | - Meihuan Liu
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, PR China.
| | - Jun Pan
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, PR China.
| |
Collapse
|
4
|
Zhang X, Li Z, Cai Z, Li J, Zhang L, Zheng D, Luo Y, Sun S, Liu Q, Tang B, Yang Y, Wang H, Sun X. Hierarchical CoS 2@NiFe-LDH as an efficient electrocatalyst for alkaline seawater oxidation. Chem Commun (Camb) 2023; 59:11244-11247. [PMID: 37656429 DOI: 10.1039/d3cc03457g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Developing earth-abundant non-noble electrocatalysts with high performance is significant but challenging for the oxygen evolution reaction (OER) in seawater. Herein, a hierarchical electrocatalyst, NiFe-layered double hydroxide (LDH) nanosheet anchored CoS2 nanowires supported on carbon cloth, is developed for efficient OER electrocatalysis in alkaline seawater, demanding a low overpotential of 256 mV to drive a current density of 100 mA cm-2, along with favorable catalytic durability for at least 48 h with negligible decay.
Collapse
Affiliation(s)
- Xuefeng Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China.
| | - Zixiao Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Zhengwei Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Jun Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
- Laoshan Laboratory, Qingdao 266237, Shandong, China
| | - Yingchun Yang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China.
| | - Huiqing Wang
- Medical Simulation Centre, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| |
Collapse
|