1
|
Traore D, Adjoua O, Feniou C, Lygatsika IM, Maday Y, Posenitskiy E, Hammernik K, Peruzzo A, Toulouse J, Giner E, Piquemal JP. Shortcut to chemically accurate quantum computing via density-based basis-set correction. Commun Chem 2024; 7:269. [PMID: 39557987 PMCID: PMC11574143 DOI: 10.1038/s42004-024-01348-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024] Open
Abstract
Using GPU-accelerated state-vector emulation, we propose to embed a quantum computing ansatz into density-functional theory via density-based basis-set corrections to obtain quantitative quantum-chemistry results on molecules that would otherwise require brute-force quantum calculations using hundreds of logical qubits. Indeed, accessing a quantitative description of chemical systems while minimizing quantum resources is an essential challenge given the limited qubit capabilities of current quantum processors. We provide a shortcut towards chemically accurate quantum computations by approaching the complete-basis-set limit through coupling the density-based basis-set corrections approach, applied to any given variational ansatz, to an on-the-fly crafting of basis sets specifically adapted to a given system and user-defined qubit budget. The resulting approach self-consistently accelerates the basis-set convergence, improving electronic densities, ground-state energies, and first-order properties (e.g. dipole moments), but can also serve as a classical, a posteriori, energy correction to quantum hardware calculations with expected applications in drug design and materials science.
Collapse
Affiliation(s)
- Diata Traore
- Sorbonne Université, LCT, UMR 7616 CNRS, 75005, Paris, France
- Qubit Pharmaceuticals, Advanced Research Department, 75014, Paris, France
| | - Olivier Adjoua
- Sorbonne Université, LCT, UMR 7616 CNRS, 75005, Paris, France
| | - César Feniou
- Sorbonne Université, LCT, UMR 7616 CNRS, 75005, Paris, France
- Qubit Pharmaceuticals, Advanced Research Department, 75014, Paris, France
| | - Ioanna-Maria Lygatsika
- Sorbonne Université, LCT, UMR 7616 CNRS, 75005, Paris, France
- Sorbonne Université, LJLL, UMR 7598 CNRS, 75005, Paris, France
- CEA, DAM, DIF, F-91297, Arpajon, France
- Université Paris-Saclay, LMCE, 91680, Bruyères-le-Châtel, France
| | - Yvon Maday
- Sorbonne Université, LJLL, UMR 7598 CNRS, 75005, Paris, France
- Institut Universitaire de France, 75005, Paris, France
| | - Evgeny Posenitskiy
- Qubit Pharmaceuticals, Advanced Research Department, 75014, Paris, France
| | | | - Alberto Peruzzo
- Qubit Pharmaceuticals, Advanced Research Department, 75014, Paris, France
| | - Julien Toulouse
- Sorbonne Université, LCT, UMR 7616 CNRS, 75005, Paris, France
- Institut Universitaire de France, 75005, Paris, France
| | - Emmanuel Giner
- Sorbonne Université, LCT, UMR 7616 CNRS, 75005, Paris, France
| | - Jean-Philip Piquemal
- Sorbonne Université, LCT, UMR 7616 CNRS, 75005, Paris, France.
- Qubit Pharmaceuticals, Advanced Research Department, 75014, Paris, France.
| |
Collapse
|
2
|
Magnusson E, Fitzpatrick A, Knecht S, Rahm M, Dobrautz W. Towards efficient quantum computing for quantum chemistry: reducing circuit complexity with transcorrelated and adaptive ansatz techniques. Faraday Discuss 2024; 254:402-428. [PMID: 39083018 DOI: 10.1039/d4fd00039k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The near-term utility of quantum computers is hindered by hardware constraints in the form of noise. One path to achieving noise resilience in hybrid quantum algorithms is to decrease the required circuit depth - the number of applied gates - to solve a given problem. This work demonstrates how to reduce circuit depth by combining the transcorrelated (TC) approach with adaptive quantum ansätze and their implementations in the context of variational quantum imaginary time evolution (AVQITE). The combined TC-AVQITE method is used to calculate ground state energies across the potential energy surfaces of H4, LiH, and H2O. In particular, H4 is a notoriously difficult case where unitary coupled cluster theory, including singles and doubles excitations, fails to provide accurate results. Adding TC yields energies close to the complete basis set (CBS) limit while reducing the number of necessary operators - and thus circuit depth - in the adaptive ansätze. The reduced circuit depth furthermore makes our algorithm more noise-resilient and accelerates convergence. Our study demonstrates that combining the TC method with adaptive ansätze yields compact, noise-resilient, and easy-to-optimize quantum circuits that yield accurate quantum chemistry results close to the CBS limit.
Collapse
Affiliation(s)
- Erika Magnusson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden.
| | | | - Stefan Knecht
- Algorithmiq Ltd, Kanavakatu 3C, FI-00160 Helsinki, Finland
| | - Martin Rahm
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden.
| | - Werner Dobrautz
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden.
| |
Collapse
|
3
|
Dobrautz W, Sokolov IO, Liao K, Ríos PL, Rahm M, Alavi A, Tavernelli I. Toward Real Chemical Accuracy on Current Quantum Hardware Through the Transcorrelated Method. J Chem Theory Comput 2024; 20:4146-4160. [PMID: 38723159 PMCID: PMC11137825 DOI: 10.1021/acs.jctc.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024]
Abstract
Quantum computing is emerging as a new computational paradigm with the potential to transform several research fields including quantum chemistry. However, current hardware limitations (including limited coherence times, gate infidelities, and connectivity) hamper the implementation of most quantum algorithms and call for more noise-resilient solutions. We propose an explicitly correlated Ansatz based on the transcorrelated (TC) approach to target these major roadblocks directly. This method transfers, without any approximation, correlations from the wave function directly into the Hamiltonian, thus reducing the resources needed to achieve accurate results with noisy quantum devices. We show that the TC approach allows for shallower circuits and improves the convergence toward the complete basis set limit, providing energies within chemical accuracy to experiment with smaller basis sets and, thus, fewer qubits. We demonstrate our method by computing bond lengths, dissociation energies, and vibrational frequencies close to experimental results for the hydrogen dimer and lithium hydride using two and four qubits, respectively. To demonstrate our approach's current and near-term potential, we perform hardware experiments, where our results confirm that the TC method paves the way toward accurate quantum chemistry calculations already on today's quantum hardware.
Collapse
Affiliation(s)
- Werner Dobrautz
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| | - Igor O. Sokolov
- IBM
Quantum, IBM Research Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Ke Liao
- Max
Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Pablo López Ríos
- Max
Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Martin Rahm
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| | - Ali Alavi
- Max
Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Ivano Tavernelli
- IBM
Quantum, IBM Research Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| |
Collapse
|
4
|
Fitzpatrick A, Nykänen A, Talarico NW, Lunghi A, Maniscalco S, García-Pérez G, Knecht S. Self-Consistent Field Approach for the Variational Quantum Eigensolver: Orbital Optimization Goes Adaptive. J Phys Chem A 2024; 128:2843-2856. [PMID: 38547028 DOI: 10.1021/acs.jpca.3c05882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
We present a self-consistent field (SCF) approach within the adaptive derivative-assembled problem-tailored ansatz variational quantum eigensolver (ADAPT-VQE) framework for efficient quantum simulations of chemical systems on near-term quantum computers. To this end, our ADAPT-VQE-SCF approach combines the idea of generating an ansatz with a small number of parameters, resulting in shallow-depth quantum circuits with a direct minimization of an energy expression that is correct to second order with respect to changes in the molecular orbital basis. Our numerical analysis, including calculations for the transition-metal complex ferrocene [Fe (C5H5)2], indicates that convergence in the self-consistent orbital optimization loop can be reached without a considerable increase in the number of two-qubit gates in the quantum circuit by comparison to a VQE optimization in the initial molecular orbital basis. Moreover, the orbital optimization can be carried out simultaneously within each iteration of the ADAPT-VQE cycle. ADAPT-VQE-SCF thus allows us to implement a routine analogous to the complete active space SCF, a cornerstone of state-of-the-art computational chemistry, in a hardware-efficient manner on near-term quantum computers. Hence, ADAPT-VQE-SCF paves the way toward a paradigm shift for quantitative quantum-chemistry simulations on quantum computers by requiring fewer qubits and opening up for the use of large and flexible atomic orbital basis sets in contrast to earlier methods that are predominantly based on the idea of full active spaces with minimal basis sets.
Collapse
Affiliation(s)
- Aaron Fitzpatrick
- Algorithmiq Ltd, Kanavakatu 3C, Helsinki FI-00160, Finland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2 D02 YN67, Ireland
| | - Anton Nykänen
- Algorithmiq Ltd, Kanavakatu 3C, Helsinki FI-00160, Finland
| | | | - Alessandro Lunghi
- School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2, Ireland
| | | | | | - Stefan Knecht
- Algorithmiq Ltd, Kanavakatu 3C, Helsinki FI-00160, Finland
- ETH Zürich, Department of Chemistry and Applied Life Sciences Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland
| |
Collapse
|
5
|
Prasad VK, Cheng F, Fekl U, Jacobsen HA. Applications of noisy quantum computing and quantum error mitigation to "adamantaneland": a benchmarking study for quantum chemistry. Phys Chem Chem Phys 2024; 26:4071-4082. [PMID: 38225897 DOI: 10.1039/d3cp03523a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The field of quantum computing has the potential to transform quantum chemistry. The variational quantum eigensolver (VQE) algorithm has allowed quantum computing to be applied to chemical problems in the noisy intermediate-scale quantum (NISQ) era. Applications of VQE have generally focused on predicting absolute energies instead of chemical properties that are relative energy differences and that are most interesting to chemists studying a chemical problem. We address this shortcoming by constructing a molecular benchmark data set in this work containing isomers of C10H16 and carbocationic rearrangements of C10H15+, calculated at a high-level of theory. Using the data set, we compared noiseless VQE simulations to conventionally performed density functional and wavefunction theory-based methods to understand the quality of results. We also investigated the effectiveness of a quantum state tomography-based error mitigation technique in applications of VQE under noise (simulated and real). Our findings reveal that the use of quantum error mitigation is crucial in the NISQ era and advantageous to yield almost noiseless quality results.
Collapse
Affiliation(s)
- Viki Kumar Prasad
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 Kings College Road, Toronto, Ontario, Canada, M5S 3G4. arno,
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada, L5L 1C6.
| | - Freeman Cheng
- Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, Ontario, Canada, M5S 2E4
| | - Ulrich Fekl
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada, L5L 1C6.
| | - Hans-Arno Jacobsen
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 Kings College Road, Toronto, Ontario, Canada, M5S 3G4. arno,
- Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, Ontario, Canada, M5S 2E4
| |
Collapse
|
6
|
Volkmann H, Sathyanarayanan R, Saenz A, Jansen K, Kühn S. Chemically Accurate Potential Curves for H 2 Molecules Using Explicitly Correlated Qubit-ADAPT. J Chem Theory Comput 2024. [PMID: 38215397 DOI: 10.1021/acs.jctc.3c01281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
With the recent advances in the development of devices capable of performing quantum computations, a growing interest in finding near-term applications has emerged in many areas of science. In the era of nonfault tolerant quantum devices, algorithms that only require comparably short circuits accompanied by high repetition rates are considered to be a promising approach for assisting classical machines with finding a solution on computationally hard problems. The ADAPT approach previously introduced in Nat. Commun. 10, 3007 (2019) extends the class of variational quantum eigensolver algorithms with dynamically growing ansätze in order to find approximations to the ground and excited state energies of molecules. In this work, the ADAPT algorithm has been combined with a first-quantized formulation for the hydrogen molecule in the Born-Oppenheimer approximation, employing the explicitly correlated basis functions introduced in J. Chem. Phys. 43, 2429 (1965). By the virtue of their explicit electronic correlation properties, it is shown in classically performed simulations that chemical accuracy (<1.6 mHa) can be reached for ground and excited state potential curves using reasonably short circuits.
Collapse
Affiliation(s)
- Hakon Volkmann
- AG Moderne Optik, Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Raamamurthy Sathyanarayanan
- AG Moderne Optik, Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Alejandro Saenz
- AG Moderne Optik, Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Karl Jansen
- CQTA, DESY Zeuthen, Platanenallee 6, 15738 Zeuthen, Germany
- Computation-Based Science and Technology Research Center, The Cyprus Institute, 20 Kavafi Street, 2121 Nicosia, Cyprus
| | - Stefan Kühn
- CQTA, DESY Zeuthen, Platanenallee 6, 15738 Zeuthen, Germany
- Computation-Based Science and Technology Research Center, The Cyprus Institute, 20 Kavafi Street, 2121 Nicosia, Cyprus
| |
Collapse
|
7
|
Wang W, Whitfield JD. Basis Set Generation and Optimization in the NISQ Era with Quiqbox.jl. J Chem Theory Comput 2023; 19:8032-8052. [PMID: 37924295 DOI: 10.1021/acs.jctc.3c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
In the noisy intermediate-scale quantum era, ab initio computation of electronic structure problems has become one of the major benchmarks for identifying the boundary between classical and quantum computational power. Basis sets play a key role in the electronic structure methods implemented on both classical and quantum devices. To investigate the consequences of single-particle basis sets, we propose a framework for more customizable basis set generation and optimization. This framework allows composite basis sets to go beyond typical basis set frameworks, such as atomic basis sets, by introducing the concept of mixed-contracted Gaussian-type orbitals. These basis set generations set the stage for more flexible variational optimization of basis set parameters. To realize this framework, we have developed an open-source software package named "Quiqbox" in the Julia programming language. We demonstrate various examples of using Quiqbox for basis set optimization and generation, ranging from optimizing atomic basis sets on the Hartree-Fock level, preparing the initial state for variational quantum eigensolver computation, and constructing basis sets with completely delocalized orbitals. We also include various benchmarks of Quiqbox for basis set optimization and ab initial electronic structure computation.
Collapse
Affiliation(s)
- Weishi Wang
- Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - James D Whitfield
- Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, United States
- AWS Center for Quantum Computing, Pasadena, California 91106, United States
| |
Collapse
|
8
|
Ten-No SL. Nonunitary projective transcorrelation theory inspired by the F12 ansatz. J Chem Phys 2023; 159:171103. [PMID: 37921247 DOI: 10.1063/5.0175337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
An alternative nonunitary transcorrelation, inspired by the F12 ansatz, is investigated. In contrast to the Jastrow transcorrelation of Boys-Handy, the effective Hamiltonian of this projective transcorrelation features: 1. a series terminating formally at four-body interactions. 2. no spin-contamination within the non-relativistic framework. 3. simultaneous satisfaction of the singlet and triplet first-order cusp conditions. 4. arbitrary choices of pairs for correlation including frozen-core approximations. We discuss the connection between the projective transcorrelation and F12 theory with applications to small molecules, to show that the cusp conditions play an important role to reduce the uncertainty arising from the nonunitary transformation.
Collapse
Affiliation(s)
- Seiichiro L Ten-No
- Graduate School of System Informatics, Kobe University, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
9
|
Schleich P, Boen J, Cincio L, Anand A, Kottmann JS, Tretiak S, Dub PA, Aspuru-Guzik A. Partitioning Quantum Chemistry Simulations with Clifford Circuits. J Chem Theory Comput 2023. [PMID: 37490516 DOI: 10.1021/acs.jctc.3c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Current quantum computing hardware is restricted by the availability of only few, noisy qubits which limits the investigation of larger, more complex molecules in quantum chemistry calculations on quantum computers in the near term. In this work, we investigate the limits of their classical and near-classical treatment while staying within the framework of quantum circuits and the variational quantum eigensolver. To this end, we consider naive and physically motivated, classically efficient product ansatz for the parametrized wavefunction adapting the separable-pair ansatz form. We combine it with post-treatment to account for interactions between subsystems originating from this ansatz. The classical treatment is given by another quantum circuit that has support between the enforced subsystems and is folded into the Hamiltonian. To avoid an exponential increase in the number of Hamiltonian terms, the entangling operations are constructed from purely Clifford or near-Clifford circuits. While Clifford circuits can be simulated efficiently classically, they are not universal. In order to account for missing expressibility, near-Clifford circuits with only few, selected non-Clifford gates are employed. The exact circuit structure to achieve this objective is molecule-dependent and is constructed using simulated annealing and genetic algorithms. We demonstrate our approach on a set of molecules of interest and investigate the extent of our methodology's reach.
Collapse
Affiliation(s)
- Philipp Schleich
- Department of Computer Science, University of Toronto, Toronto M5S 1A1, Canada
- Vector Institute for Artificial Intelligence, Toronto M5G 1M1, Canada
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Joseph Boen
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Applied Mathematics & Statistics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lukasz Cincio
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Abhinav Anand
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto M5S 1A1, Canada
| | - Jakob S Kottmann
- Department of Computer Science, University of Augsburg, Augsburg 86159, Germany
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pavel A Dub
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Alán Aspuru-Guzik
- Department of Computer Science, University of Toronto, Toronto M5S 1A1, Canada
- Vector Institute for Artificial Intelligence, Toronto M5G 1M1, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto M5S 1A1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 1A1, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto M5S 1A1, Canada
- Canadian Institute for Advanced Research (CIFAR) Lebovic Fellow, Toronto M5S 1M1, Canada
| |
Collapse
|
10
|
Ma H, Liu J, Shang H, Fan Y, Li Z, Yang J. Multiscale quantum algorithms for quantum chemistry. Chem Sci 2023; 14:3190-3205. [PMID: 36970085 PMCID: PMC10034224 DOI: 10.1039/d2sc06875c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Exploring the potential applications of quantum computers in material design and drug discovery is attracting more and more attention after quantum advantage has been demonstrated using Gaussian boson sampling. However, quantum resource requirements in material and (bio)molecular simulations are far beyond the capacity of near-term quantum devices. In this work, multiscale quantum computing is proposed for quantum simulations of complex systems by integrating multiple computational methods at different scales of resolution. In this framework, most computational methods can be implemented in an efficient way on classical computers, leaving the critical portion of the computation to quantum computers. The simulation scale of quantum computing strongly depends on available quantum resources. As a near-term scheme, we integrate adaptive variational quantum eigensolver algorithms, second-order Møller-Plesset perturbation theory and Hartree-Fock theory within the framework of the many-body expansion fragmentation approach. This new algorithm is applied to model systems consisting of hundreds of orbitals with decent accuracy on the classical simulator. This work should encourage further studies on quantum computing for solving practical material and biochemistry problems.
Collapse
Affiliation(s)
- Huan Ma
- Hefei National Laboratory, University of Science and Technology of China Hefei 230088 China
| | - Jie Liu
- Hefei National Laboratory, University of Science and Technology of China Hefei 230088 China
| | - Honghui Shang
- State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences Beijing 100190 China
| | - Yi Fan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 China
| | - Zhenyu Li
- Hefei National Laboratory, University of Science and Technology of China Hefei 230088 China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 China
| | - Jinlong Yang
- Hefei National Laboratory, University of Science and Technology of China Hefei 230088 China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
11
|
Dobrautz W, Cohen AJ, Alavi A, Giner E. Performance of a one-parameter correlation factor for transcorrelation: Study on a series of second row atomic and molecular systems. J Chem Phys 2022; 156:234108. [PMID: 35732534 DOI: 10.1063/5.0088981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we investigate the performance of a recently proposed transcorrelated (TC) approach based on a single-parameter correlation factor [E. Giner, J. Chem. Phys. 154, 084119 (2021)] for systems involving more than two electrons. The benefit of such an approach relies on its simplicity as efficient numerical-analytical schemes can be set up to compute the two- and three-body integrals occurring in the effective TC Hamiltonian. To obtain accurate ground state energies within a given basis set, the present TC scheme is coupled to the recently proposed TC-full configuration interaction quantum Monte Carlo method [Cohen et al., J. Chem. Phys. 151, 061101 (2019)]. We report ground state total energies on the Li-Ne series, together with their first cations, computed with increasingly large basis sets and compare to more elaborate correlation factors involving electron-electron-nucleus coordinates. Numerical results on the Li-Ne ionization potentials show that the use of the single-parameter correlation factor brings on average only a slightly lower accuracy (1.2 mH) in a triple-zeta quality basis set with respect to a more sophisticated correlation factor. However, already using a quadruple-zeta quality basis set yields results within chemical accuracy to complete basis set limit results when using this novel single-parameter correlation factor. Calculations on the H2O, CH2, and FH molecules show that a similar precision can be obtained within a triple-zeta quality basis set for the atomization energies of molecular systems.
Collapse
Affiliation(s)
- Werner Dobrautz
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Aron J Cohen
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Ali Alavi
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Emmanuel Giner
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France
| |
Collapse
|