1
|
Giri NC, Mintmier B, Radhakrishnan M, Mielke JW, Wilcoxen J, Basu P. The critical role of a conserved lysine residue in periplasmic nitrate reductase catalyzed reactions. J Biol Inorg Chem 2024; 29:395-405. [PMID: 38782786 PMCID: PMC12121628 DOI: 10.1007/s00775-024-02057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Periplasmic nitrate reductase NapA from Campylobacter jejuni (C. jejuni) contains a molybdenum cofactor (Moco) and a 4Fe-4S cluster and catalyzes the reduction of nitrate to nitrite. The reducing equivalent required for the catalysis is transferred from NapC → NapB → NapA. The electron transfer from NapB to NapA occurs through the 4Fe-4S cluster in NapA. C. jejuni NapA has a conserved lysine (K79) between the Mo-cofactor and the 4Fe-4S cluster. K79 forms H-bonding interactions with the 4Fe-4S cluster and connects the latter with the Moco via an H-bonding network. Thus, it is conceivable that K79 could play an important role in the intramolecular electron transfer and the catalytic activity of NapA. In the present study, we show that the mutation of K79 to Ala leads to an almost complete loss of activity, suggesting its role in catalytic activity. The inhibition of C. jejuni NapA by cyanide, thiocyanate, and azide has also been investigated. The inhibition studies indicate that cyanide inhibits NapA in a non-competitive manner, while thiocyanate and azide inhibit NapA in an uncompetitive manner. Neither inhibition mechanism involves direct binding of the inhibitor to the Mo-center. These results have been discussed in the context of the loss of catalytic activity of NapA K79A variant and a possible anion binding site in NapA has been proposed.
Collapse
Affiliation(s)
- Nitai C Giri
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, USA
| | - Breeanna Mintmier
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, USA
| | - Manohar Radhakrishnan
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, USA
| | - Jonathan W Mielke
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jarett Wilcoxen
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Li Y, Qiao S, Guo M, Zhang L, Liu G, Zhou J. Biological Self-Assembled Transmembrane Electron Conduits for High-Efficiency Ammonia Production in Microbial Electrosynthesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7457-7468. [PMID: 38642050 DOI: 10.1021/acs.est.3c10897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
Usually, CymA is irreplaceable as the electron transport hub in Shewanella oneidensis MR-1 bidirectional electron transfer. In this work, biologically self-assembled FeS nanoparticles construct an artificial electron transfer route and implement electron transfer from extracellular into periplasmic space without CymA involvement, which present similar properties to type IV pili. Bacteria are wired up into a network, and more electron transfer conduits are activated by self-assembled transmembrane FeS nanoparticles (electron conduits), thereby substantially enhancing the ammonia production. In this study, we achieved an average NH4+-N production rate of 391.8 μg·h-1·L reactor-1 with the selectivity of 98.0% and cathode efficiency of 65.4%. Additionally, the amide group in the protein-like substances located in the outer membrane was first found to be able to transfer electrons from extracellular into intracellular with c-type cytochromes. Our work provides a new viewpoint that contributes to a better understanding of the interconnections between semiconductor materials and bacteria and inspires the exploration of new electron transfer chain components.
Collapse
Affiliation(s)
- Yao Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, P.R. China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, P.R. China
| | - Meiwei Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, P.R. China
| | - Liying Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, P.R. China
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, P.R. China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, P.R. China
| |
Collapse
|
3
|
Liu X, Qi X, Gu Y, Huang X, Liang P. Titanium mesh as the anode of electrochemically active biofilm sensor for improved sensitivity in water toxicity real-time early-warning. Biosens Bioelectron 2023; 241:115692. [PMID: 37734201 DOI: 10.1016/j.bios.2023.115692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
As serious water ecological pollution caused by toxicant leakage occurs frequently, early-warning for toxicity presented in water environment attracts increasing attentions as it saves time to retain water safety and human health. Electrochemically active biofilm (EAB) sensor is a promising device for in situ real-time water toxicity early-warning. To improve the sensitivity of EAB sensor particularly for low-concentration toxicity warning, this study employed titanium mesh (TiM) as the anode to construct an EAB sensor. Compared to traditional EAB sensor with carbon felt (CF) anode, the sensitivity of the TiM sensor was increased up to 37.4 times. The effects of mesh size (TiM50, TiM100, TiM150) and operation mode (flow-by and flow-through) on the sensitivity of TiM sensors were further investigated. Results showed the sensor with TiM100 anode had the highest inhibition rate (IR) in flow-by mode, attributed to low charge transfer resistance (Rct) and fast mass transfer. Flow-through operation could further enhance TiM100 sensor's sensitivity from flow-by operation and succeeded to signal as low as 0.0025% formaldehyde, the lowest so far tested in EAB sensor with sensing anode. Multiple toxicity shocks on flow-through TiM100 sensor revealed its good recoverability towards all tested formaldehyde concentration from 0.01% to 0.0025%, during which electrochemical activity degradation and biomass accumulation partially impaired the repeatability. This work highlights the great improvement of EAB sensors by utilizing titanium mesh as EAB carrier and provides a reference for the practical application of metallic materials for EAB sensors.
Collapse
Affiliation(s)
- Xinning Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Yuyi Gu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
4
|
Yu Q, Mao H, Yang B, Zhu Y, Sun C, Zhao Z, Li Y, Zhang Y. Electro-polarization of protein-like substances accelerates trans-cell-wall electron transfer in microbial extracellular respiration. iScience 2023; 26:106065. [PMID: 36818305 PMCID: PMC9929677 DOI: 10.1016/j.isci.2023.106065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/22/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Electrical stimulation has been used to strengthen microbial extracellular electron transfer (EET), however, the deep-seated reasons remain unclear. Here we reported that Bacillus subtilis, a typical gram-positive bacterium capable of extracellular respiration, obtained a higher EET capacity after the electrical domestication. After the electrical domestication, the current generated by the EET of B. subtilis was 23.4-fold that of the control group without pre-domestication. Multiple lines of evidence in bacterial cells of B. subtilis, their cell walls, and a model tripeptide indicated that the polarization of amide groups after the electrical stimulation forwarded the H-bonds recombination and radical generation of protein-like substances to develop extracellular electron transfer via the proton-coupled pattern. The improved electrochemical properties of protein-like substances benefited the trans-cell-wall electron transfer and strengthen extracellular respiration. This study was the first exploration to promote microbial extracellular respiration by improving the electrochemical properties of protein-like substances in cell envelopes.
Collapse
Affiliation(s)
- Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haohao Mao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bowen Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yahui Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Cheng Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yang Li
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China,Corresponding author
| |
Collapse
|