1
|
Kou Y, Zhang XG, Li H, Zhang KL, Xu QC, Zheng QN, Tian JH, Zhang YJ, Li JF. SERS-Based Hydrogen Bonding Induction Strategy for Gaseous Acetic Acid Capture and Detection. Anal Chem 2024; 96:4275-4281. [PMID: 38409670 DOI: 10.1021/acs.analchem.3c05905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Surface-enhanced Raman scattering (SERS) can overcome the existing technological limitations, such as complex processes and harsh conditions in gaseous small-molecule detection, and advance the development of real-time gas sensing at room temperature. In this study, a SERS-based hydrogen bonding induction strategy for capturing and sensing gaseous acetic acid is proposed for the detection demands of gaseous acetic acid. This addresses the challenges of low adsorption of gaseous small molecules on SERS substrates and small Raman scattering cross sections and enables the first SERS-based detection of gaseous acetic acid by a portable Raman spectrometer. To provide abundant hydrogen bond donors and acceptors, 4-mercaptobenzoic acid (4-MBA) was used as a ligand molecule modified on the SERS substrate. Furthermore, a sensing chip with a low relative standard deviation (RSD) of 4.15% was constructed, ensuring highly sensitive and reliable detection. The hydrogen bond-induced acetic acid trapping was confirmed by experimental spectroscopy and density functional theory (DFT). In addition, to achieve superior accuracy compared to conventional methods, an innovative analytical method based on direct response hydrogen bond formation (IO-H/Iref) was proposed, enabling the detection of gaseous acetic acid at concentrations as low as 60 ppb. The strategy demonstrated a superior anti-interference capability in simulated breath and wine detection systems. Moreover, the high reusability of the chip highlights the significant potential for real-time sensing of gaseous acetic acid.
Collapse
Affiliation(s)
- Yichuan Kou
- College of Physical Science and Technology, College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Hongmei Li
- College of Physical Science and Technology, College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kai-Le Zhang
- College of Physical Science and Technology, College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qing-Chi Xu
- College of Physical Science and Technology, College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qing-Na Zheng
- College of Physical Science and Technology, College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing-Hua Tian
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Yue-Jiao Zhang
- College of Physical Science and Technology, College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- College of Physical Science and Technology, College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
2
|
Behera B, Lee YP. Detailed mechanism and kinetics of reactions of anti- and syn-CH 3CHOO with HC(O)OH: infrared spectra of conformers of hydroperoxyethyl formate. Phys Chem Chem Phys 2024; 26:1950-1966. [PMID: 38116617 DOI: 10.1039/d3cp04086k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The reaction of CH3CHOO with HC(O)OH has a large rate coefficient so that it might play a significant role in the formation of secondary organic aerosols (SOA) in the atmosphere. We investigated the detailed mechanism and kinetics of the reactions of Criegee intermediate anti- and syn-CH3CHOO with HC(O)OH with a step-scan Fourier-transform infrared spectrometer by recording time-resolved absorption spectra of transient species and end products produced upon irradiation at 308 nm of a flowing mixture of CH3CHI2/O2/HC(O)OH at 298 K and 60 Torr. Thirteen bands of hydroperoxyethyl formate [HC(O)OCH(CH3)OOH, HPEF], the hydrogen-transferred adduct of CH3CHOO and HC(O)OH, were observed. Careful analysis deconvoluted these bands into absorption of three conformers of HPEF: a transient HPEF (P2*/P3*), a more stable open-form HPEF (mainly P2), and a stable intramolecularly hydrogen-bonded HPEF (mainly P1). At a later period, the end-product formic acetic anhydride [CH3C(O)OC(O)H, FAA], a dehydrated product of HPEF, was observed; this end-product is the same as that observed in CH2OO + CH3C(O)OH. Theoretical calculations on the reaction pathway scheme were performed to elucidate these reaction paths. Syn-CH3CHOO + HC(O)OH produced conformers P2*/P3* initially, followed by conversion to conformers P2, whereas anti-CH3CHOO + HC(O)OH produced conformers P2 and P1 directly. We derived a rate coefficient for the reaction CH3CHOO + HC(O)OH to be k = (2.1 ± 0.7) × 10-10 cm3 molecule-1 s-1 at 298 K and 40-80 Torr; the rate coefficient appeared to show insignificant conformation-specificity. We also found that FAA was produced mainly from the dehydration of the open-form HPEF (P2) with a rate coefficient k = (1420 ± 70) s-1; the intramolecularly hydrogen-bonded HPEF (P1) is stable.
Collapse
Affiliation(s)
- Bedabyas Behera
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001, Ta-Hsueh Road, Hsinchu 300093, Taiwan.
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001, Ta-Hsueh Road, Hsinchu 300093, Taiwan.
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
3
|
Wang S, Zhao Y, Chan AWH, Yao M, Chen Z, Abbatt JPD. Organic Peroxides in Aerosol: Key Reactive Intermediates for Multiphase Processes in the Atmosphere. Chem Rev 2023; 123:1635-1679. [PMID: 36630720 DOI: 10.1021/acs.chemrev.2c00430] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Organic peroxides (POs) are organic molecules with one or more peroxide (-O-O-) functional groups. POs are commonly regarded as chemically labile termination products from gas-phase radical chemistry and therefore serve as temporary reservoirs for oxidative radicals (HOx and ROx) in the atmosphere. Owing to their ubiquity, active gas-particle partitioning behavior, and reactivity, POs are key reactive intermediates in atmospheric multiphase processes determining the life cycle (formation, growth, and aging), climate, and health impacts of aerosol. However, there remain substantial gaps in the origin, molecular diversity, and fate of POs due to their complex nature and dynamic behavior. Here, we summarize the current understanding on atmospheric POs, with a focus on their identification and quantification, state-of-the-art analytical developments, molecular-level formation mechanisms, multiphase chemical transformation pathways, as well as environmental and health impacts. We find that interactions with SO2 and transition metal ions are generally the fast PO transformation pathways in atmospheric liquid water, with lifetimes estimated to be minutes to hours, while hydrolysis is particularly important for α-substituted hydroperoxides. Meanwhile, photolysis and thermolysis are likely minor sinks for POs. These multiphase PO transformation pathways are distinctly different from their gas-phase fates, such as photolysis and reaction with OH radicals, which highlights the need to understand the multiphase partitioning of POs. By summarizing the current advances and remaining challenges for the investigation of POs, we propose future research priorities regarding their origin, fate, and impacts in the atmosphere.
Collapse
Affiliation(s)
- Shunyao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai200444, China
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, OntarioM5S 3E5, Canada
| | - Yue Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, OntarioM5S 3E5, Canada
- School of the Environment, University of Toronto, Toronto, OntarioM5S 3E8, Canada
| | - Min Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zhongming Chen
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing100871, China
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| |
Collapse
|
4
|
Yang JN, Takahashi K, Lin JJM. Reaction Kinetics of Criegee Intermediates with Nitric Acid. J Phys Chem A 2022; 126:6160-6170. [PMID: 36044562 DOI: 10.1021/acs.jpca.2c04596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work investigated the reaction kinetics of HNO3 with four Criegee intermediates (CIs): CH2OO, (CH3)2COO, methyl vinyl ketone oxide (MVKO), and methacrolein oxide (MACRO). Our results show that these reactions are extremely fast with rate coefficients of (1.51 ± 0.45) × 10-10, (3.54 ± 1.06) × 10-10, (3.93 ± 1.18) × 10-10, and (3.0 ± 1.0) × 10-10 cm3 s-1 for reactions of HNO3 with CH2OO, (CH3)2COO, syn-MVKO, and anti-MACRO, respectively. This is consistent with previous results for the reactions between CIs and carboxylic acids, but the rate coefficient of CH2OO + HNO3 in the literature [Foreman Angew. Chem. 2016, 128, 10575] was found to be overestimated by a factor of 3.6. In addition, we did not observe any significant pressure dependence in the HNO3 reactions with CH2OO and (CH3)2COO under 100-400 Torr. Our results indicate that in a dry area with severe NOx pollution, the reactions of CIs with HNO3 and their products may be worthy of attention, but these reactions may be insignificant under high-humidity conditions. However, CI reactions with HNO3 may not play an important role in the atmospheric removal processes of HNO3 because of the low concentrations of CIs.
Collapse
Affiliation(s)
- Jie-Ning Yang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.,Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Kaito Takahashi
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Jim Jr-Min Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.,Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|