1
|
Ritter CM, Ma T, Leijnse N, Farhangi Barooji Y, Hamilton W, Brickman JM, Doostmohammadi A, Oddershede LB. Differential Elasticity Affects Lineage Segregation of Embryonic Stem Cells. PHYSICAL REVIEW LETTERS 2025; 134:168401. [PMID: 40344104 DOI: 10.1103/physrevlett.134.168401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/05/2024] [Accepted: 03/17/2025] [Indexed: 05/11/2025]
Abstract
The question of what guides lineage segregation is central to development, where cellular differentiation leads to segregated cell populations destined for specialized functions. Here, using optical tweezers measurements of mouse embryonic stem cells, we reveal a mechanical mechanism based on differential elasticity in the second lineage segregation of the embryonic inner cell mass into epiblast (EPI) cells, which will develop into the fetus, and primitive endoderm (PrE), which will form extraembryonic structures such as the yolk sac. Remarkably, we find that these mechanical differences already occur during priming, not just after a cell has committed to differentiation. Specifically, we show that PrE-primed cells exhibit significantly higher elasticity than EPI-primed cells, characterized by lower power spectrum scaling exponents, higher Young's modulus, and lower loss tangent. Using a model of two cell types differing only in elasticity, we show that differential elasticity alone is sufficient to lead to segregation between cell types, suggesting that the mechanical attributes of the cells contribute to the segregation process. Importantly, we find that this process relies on cellular activity. Our findings present differential elasticity as a previously unknown mechanical contributor to lineage segregation during embryo morphogenesis.
Collapse
Affiliation(s)
- Christine M Ritter
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Tianxiang Ma
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Natascha Leijnse
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | - William Hamilton
- Walter and Eliza Hall Institute, RNA Biology Lab, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Joshua M Brickman
- University of Copenhagen, The Novo Norksisk Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | | | - Lene B Oddershede
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Singh D, Robin T, Urbakh M, Reuveni S. High-order Michaelis-Menten equations allow inference of hidden kinetic parameters in enzyme catalysis. Nat Commun 2025; 16:2739. [PMID: 40113771 PMCID: PMC11926178 DOI: 10.1038/s41467-025-57327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025] Open
Abstract
Single-molecule measurements provide a platform for investigating the dynamical properties of enzymatic reactions. To this end, the single-molecule Michaelis-Menten equation was instrumental as it asserts that the first moment of the enzymatic turnover time depends linearly on the reciprocal of the substrate concentration. This, in turn, provides robust and convenient means to determine the maximal turnover rate and the Michaelis-Menten constant. Yet, the information provided by these parameters is incomplete and does not allow access to key observables such as the lifetime of the enzyme-substrate complex, the rate of substrate-enzyme binding, and the probability of successful product formation. Here we show that these quantities and others can be inferred via a set of high-order Michaelis-Menten equations that we derive. These equations capture universal linear relations between the reciprocal of the substrate concentration and distinguished combinations of turnover time moments, essentially generalizing the Michaelis-Menten equation to moments of any order. We demonstrate how key observables such as the lifetime of the enzyme-substrate complex, the rate of substrate-enzyme binding, and the probability of successful product formation, can all be inferred using these high-order Michaelis-Menten equations. We test our inference procedure to show that it is robust, producing accurate results with only several thousand turnover events per substrate concentration.
Collapse
Affiliation(s)
- Divya Singh
- School of Chemistry, The Center for Physics and Chemistry of Living Systems, The Raymond and Beverly Sackler Center for Computational Molecular and Materials Science, and The Mark Ratner Institute for Single Molecule Chemistry, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Tal Robin
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Michael Urbakh
- School of Chemistry, The Center for Physics and Chemistry of Living Systems, The Raymond and Beverly Sackler Center for Computational Molecular and Materials Science, and The Mark Ratner Institute for Single Molecule Chemistry, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Shlomi Reuveni
- School of Chemistry, The Center for Physics and Chemistry of Living Systems, The Raymond and Beverly Sackler Center for Computational Molecular and Materials Science, and The Mark Ratner Institute for Single Molecule Chemistry, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
3
|
Wang W, Liang Y, Chechkin AV, Metzler R. Non-Gaussian behavior in fractional Laplace motion with drift. Phys Rev E 2025; 111:034121. [PMID: 40247486 DOI: 10.1103/physreve.111.034121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/21/2025] [Indexed: 04/19/2025]
Abstract
We study fractional Laplace motion (FLM) obtained from subordination of fractional Brownian motion (FBM) to a gamma process in the presence of an external drift that acts on the composite process or of an internal drift acting solely on the parental process. We derive the statistical properties of this FLM process and find that the external drift does not influence the mean-squared displacement, whereas the internal drift leads to normal diffusion, dominating at long times in the subdiffusive Hurst exponent regime. We also investigate the intricate properties of the probability density function (PDF), demonstrating that it possesses a central Gaussian region whose expansion in time is influenced by FBM's Hurst exponent. Outside of this region, the PDF follows a non-Gaussian pattern. The kurtosis of this FLM process converges toward the Gaussian limit at long times insensitive to the extreme non-Gaussian tails. Additionally, in the presence of the external drift, the PDF remains symmetric and centered at x=vt. In contrast, for the internal drift this symmetry is broken. The results of our computer simulations are fully consistent with the theoretical predictions. The FLM model is suitable for describing stochastic processes with a non-Gaussian PDF and long-ranged correlations of the motion.
Collapse
Affiliation(s)
- Wei Wang
- University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam, Germany
| | - Yingjie Liang
- University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam, Germany
- Hohai University, College of Mechanics and Engineering Science, 211100 Nanjing, China
| | - Aleksei V Chechkin
- University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam, Germany
- Wrocław University of Science and Technology, Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, 50-370 Wrocław, Poland
- Max Planck Institute of Microstructure Physics, German-Ukrainian Core of Excellence, Weinberg 2, 06120 Halle, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Ralf Metzler
- University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
| |
Collapse
|
4
|
Shafir D, Burov S. Disorder-Induced Anomalous Mobility Enhancement in Confined Geometries. PHYSICAL REVIEW LETTERS 2024; 133:037101. [PMID: 39094168 DOI: 10.1103/physrevlett.133.037101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/14/2024] [Indexed: 08/04/2024]
Abstract
Strong, scale-free disorder disrupts typical transport properties like the Stokes-Einstein relation and linear response, leading to anomalous diffusion observed in amorphous materials, glasses, living cells, and other systems. Our study reveals that the combination of scale-free quenched disorder and geometrical constraints induces unconventional single-particle mobility behavior. Specifically, in a two-dimensional channel with width w, under external drive, tighter geometrical constraints (smaller w) enhance mobility. We derive an explicit form of the response to an external force by utilizing the double-subordination approach for the quenched trap model. The observed mobility enhancement occurs in the low-temperature regime where the distribution of localization times is scale-free.
Collapse
|
5
|
Speckner K, Rehfeldt F, Weiss M. Intermittent subdiffusion of short nuclear actin rods due to interactions with chromatin. Phys Rev E 2024; 110:014406. [PMID: 39160992 DOI: 10.1103/physreve.110.014406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/25/2024] [Indexed: 08/21/2024]
Abstract
The interior of cellular nuclei, the nucleoplasm, is a crowded fluid that is pervaded by protein-decorated DNA polymers, the chromatin. Due to the complex architecture of chromatin and a multitude of associated nonequilibrium processes, e.g., DNA repair, the nucleoplasm can be expected to feature nontrivial material properties and hence anomalous transport phenomena. Here, we have used single-particle tracking on nuclear actin rods to probe such transport phenomena. Our analysis reveals that short actin rods in the nucleus show an intermittent, antipersistent subdiffusion with clear signatures of fractional Brownian motion. Moreover, the diffusive motion is heterogeneous with clear signatures of an intermittent switching of trajectories between at least two different mobilities, most likely due to transient associations with chromatin. In line with this interpretation, hyperosmotic stress is seen to stall the motion of nuclear actin rods, whereas hypo-osmotic conditions yield a reptationlike motion. Our data highlights the heterogeneity of transport in the nucleoplasm that needs to be taken into account for an understanding of nucleoplasmic organization and the mechanobiology of nuclei.
Collapse
|
6
|
Pérez-Mitta G, Sezgin Y, Wang W, MacKinnon R. Freestanding bilayer microscope for single-molecule imaging of membrane proteins. SCIENCE ADVANCES 2024; 10:eado4722. [PMID: 38905330 PMCID: PMC11192074 DOI: 10.1126/sciadv.ado4722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
Integral membrane proteins (IMPs) constitute a large fraction of organismal proteomes, playing fundamental roles in physiology and disease. Despite their importance, the mechanisms underlying dynamic features of IMPs, such as anomalous diffusion, protein-protein interactions, and protein clustering, remain largely unknown due to the high complexity of cell membrane environments. Available methods for in vitro studies are insufficient to study IMP dynamics systematically. This publication introduces the freestanding bilayer microscope (FBM), which combines the advantages of freestanding bilayers with single-particle tracking. The FBM, based on planar lipid bilayers, enables the study of IMP dynamics with single-molecule resolution and unconstrained diffusion. This paper benchmarks the FBM against total internal reflection fluorescence imaging on supported bilayers and is used here to estimate ion channel open probability and to examine the diffusion behavior of an ion channel in phase-separated bilayers. The FBM emerges as a powerful tool to examine membrane protein/lipid organization and dynamics to understand cell membrane processes.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mitta
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Yeliz Sezgin
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | | | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
7
|
Liang Y, Wang W, Metzler R. Aging and confinement in subordinated fractional Brownian motion. Phys Rev E 2024; 109:064144. [PMID: 39020934 DOI: 10.1103/physreve.109.064144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
We study the effects of aging properties of subordinated fractional Brownian motion (FBM) with drift and in harmonic confinement, when the measurement of the stochastic process starts a time t_{a}>0 after its original initiation at t=0. Specifically, we consider the aged versions of the ensemble mean-squared displacement (MSD) and the time-averaged MSD (TAMSD), along with the aging factor. Our results are favorably compared with simulations results. The aging subordinated FBM exhibits a disparity between MSD and TAMSD and is thus weakly nonergodic, while strong aging is shown to effect a convergence of the MSD and TAMSD. The information on the aging factor with respect to the lag time exhibits an identical form to the aging behavior of subdiffusive continuous-time random walks (CTRW). The statistical properties of the MSD and TAMSD for the confined subordinated FBM are also derived. At long times, the MSD in the harmonic potential has a stationary value, that depends on the Hurst index of the parental (nonequilibrium) FBM. The TAMSD of confined subordinated FBM does not relax to a stationary value but increases sublinearly with lag time, analogously to confined CTRW. Specifically, short aging times t_{a} in confined subordinated FBM do not affect the aged MSD, while for long aging times the aged MSD has a power-law increase and is identical to the aged TAMSD.
Collapse
|
8
|
Schirripa Spagnolo C, Luin S. Impact of temporal resolution in single particle tracking analysis. DISCOVER NANO 2024; 19:87. [PMID: 38724858 PMCID: PMC11082114 DOI: 10.1186/s11671-024-04029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Temporal resolution is a key parameter in the observation of dynamic processes, as in the case of single molecules motions visualized in real time in two-dimensions by wide field (fluorescence) microscopy, but a systematic investigation of its effects in all the single particle tracking analysis steps is still lacking. Here we present tools to quantify its impact on the estimation of diffusivity and of its distribution using one of the most popular tracking software for biological applications on simulated data and movies. We found important shifts and different widths for diffusivity distributions, depending on the interplay of temporal sampling conditions with various parameters, such as simulated diffusivity, density of spots, signal-to-noise ratio, lengths of trajectories, and kind of boundaries in the simulation. We examined conditions starting from the ones of experiments on the fluorescently labelled receptor p75NTR, a relatively fast-diffusing membrane receptor (diffusivity around 0.5-1 µm2/s), visualized by TIRF microscopy on the basal membrane of living cells. From the analysis of the simulations, we identified the best conditions in cases similar to these ones; considering also the experiments, we could confirm a range of values of temporal resolution suitable for obtaining reliable diffusivity results. The procedure we present can be exploited in different single particle/molecule tracking applications to find an optimal temporal resolution.
Collapse
Affiliation(s)
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy.
- NEST Laboratory, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa, Italy.
| |
Collapse
|
9
|
Di Terlizzi I, Gironella M, Herraez-Aguilar D, Betz T, Monroy F, Baiesi M, Ritort F. Variance sum rule for entropy production. Science 2024; 383:971-976. [PMID: 38422150 DOI: 10.1126/science.adh1823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024]
Abstract
Entropy production is the hallmark of nonequilibrium physics, quantifying irreversibility, dissipation, and the efficiency of energy transduction processes. Despite many efforts, its measurement at the nanoscale remains challenging. We introduce a variance sum rule (VSR) for displacement and force variances that permits us to measure the entropy production rate σ in nonequilibrium steady states. We first illustrate it for directly measurable forces, such as an active Brownian particle in an optical trap. We then apply the VSR to flickering experiments in human red blood cells. We find that σ is spatially heterogeneous with a finite correlation length, and its average value agrees with calorimetry measurements. The VSR paves the way to derive σ using force spectroscopy and time-resolved imaging in living and active matter.
Collapse
Affiliation(s)
- I Di Terlizzi
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
- Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - M Gironella
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, C/ Marti i Franques 1, 08028 Barcelona, Spain
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - D Herraez-Aguilar
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - T Betz
- Third Institute of Physics, Georg August Universität Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - F Monroy
- Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
- Translational Biophysics, Instituto de Investigación Sanitaria Hospital Doce de Octubre (IMAS12), Av. Andalucía, 28041 Madrid, Spain
| | - M Baiesi
- Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
- INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - F Ritort
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, C/ Marti i Franques 1, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Goswami K, Metzler R. Trapped tracer in a non-equilibrium bath: dynamics and energetics. SOFT MATTER 2023; 19:8802-8819. [PMID: 37946588 DOI: 10.1039/d3sm01177a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
We study the dynamics of a tracer that is elastically coupled to active particles being kept at two different temperatures, as a prototype of tracer dynamics in a non-equilibrium bath. Employing analytical techniques, we find the exact solution of the probability density function for the effective motion of the tracer. The analytical results are supported by numerical simulations. By combining the experimentally accessible quantities such as the response function and the power spectrum, we measure the non-equilibrium fluctuations in terms of the effective temperature. In addition, we compute the energy dissipation rate to find the precise effects of activity. Our study is relevant in understanding athermal fluctuations arising in cytoskeletal networks or inside a chromosome.
Collapse
Affiliation(s)
- Koushik Goswami
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea.
| |
Collapse
|
11
|
Janczura J, Magdziarz M, Metzler R. Parameter estimation of the fractional Ornstein-Uhlenbeck process based on quadratic variation. CHAOS (WOODBURY, N.Y.) 2023; 33:103125. [PMID: 37832518 DOI: 10.1063/5.0158843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Modern experiments routinely produce extensive data of the diffusive dynamics of tracer particles in a large range of systems. Often, the measured diffusion turns out to deviate from the laws of Brownian motion, i.e., it is anomalous. Considerable effort has been put in conceiving methods to extract the exact parameters underlying the diffusive dynamics. Mostly, this has been done for unconfined motion of the tracer particle. Here, we consider the case when the particle is confined by an external harmonic potential, e.g., in an optical trap. The anomalous particle dynamics is described by the fractional Ornstein-Uhlenbeck process, for which we establish new estimators for the parameters. Specifically, by calculating the empirical quadratic variation of a single trajectory, we are able to recover the subordination process governing the particle motion and use it as a basis for the parameter estimation. The statistical properties of the estimators are evaluated from simulations.
Collapse
Affiliation(s)
- Joanna Janczura
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Marcin Magdziarz
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ralf Metzler
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
| |
Collapse
|
12
|
Liang Y, Wang W, Metzler R, Cherstvy AG. Anomalous diffusion, nonergodicity, non-Gaussianity, and aging of fractional Brownian motion with nonlinear clocks. Phys Rev E 2023; 108:034113. [PMID: 37849140 DOI: 10.1103/physreve.108.034113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/07/2023] [Indexed: 10/19/2023]
Abstract
How do nonlinear clocks in time and/or space affect the fundamental properties of a stochastic process? Specifically, how precisely may ergodic processes such as fractional Brownian motion (FBM) acquire predictable nonergodic and aging features being subjected to such conditions? We address these questions in the current study. To describe different types of non-Brownian motion of particles-including power-law anomalous, ultraslow or logarithmic, as well as superfast or exponential diffusion-we here develop and analyze a generalized stochastic process of scaled-fractional Brownian motion (SFBM). The time- and space-SFBM processes are, respectively, constructed based on FBM running with nonlinear time and space clocks. The fundamental statistical characteristics such as non-Gaussianity of particle displacements, nonergodicity, as well as aging are quantified for time- and space-SFBM by selecting different clocks. The latter parametrize power-law anomalous, ultraslow, and superfast diffusion. The results of our computer simulations are fully consistent with the analytical predictions for several functional forms of clocks. We thoroughly examine the behaviors of the probability-density function, the mean-squared displacement, the time-averaged mean-squared displacement, as well as the aging factor. Our results are applicable for rationalizing the impact of nonlinear time and space properties superimposed onto the FBM-type dynamics. SFBM offers a general framework for a universal and more precise model-based description of anomalous, nonergodic, non-Gaussian, and aging diffusion in single-molecule-tracking observations.
Collapse
Affiliation(s)
- Yingjie Liang
- College of Mechanics and Materials, Hohai University, 211100 Nanjing, China
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Wei Wang
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Andrey G Cherstvy
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|