1
|
Watson PD, Meizyte G, Pearcy PAJ, Brewer EI, Green AE, Stace AJ, Mackenzie SR. Infrared Photodissociation Spectroscopy of Cationic Nitric Oxide Clusters, [(NO) n] +, and [NO 2(NO) n] . J Phys Chem A 2025; 129:3867-3875. [PMID: 40258304 DOI: 10.1021/acs.jpca.5c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Photofragmentation spectroscopy provides a powerful method for the determination of structures and bonding in isolated gas-phase clusters. Here we report infrared action spectra of mass-selected cationic nitric oxide clusters, (NO)n+ (n = 3-8), and mixed NO2(NO)n+ clusters which are interpreted with the help of quantum chemical calculations. Despite the rich potential energy landscape which exhibits very many calculated low-energy isomers, clear structural motifs are observed. Important differences between our (NO)n+ spectra and others published previously are interpreted in terms of the qualitatively different experimental techniques employed in the initial formation of the clusters in each study. Finally, spectra recorded in different fragmentation channels provide clear evidence for intracluster chemistry leading to the formation of mixed nitrous oxide/nitrogen dioxide/nitric oxide complexes, (N2O)(NO2)(NO)n+.
Collapse
Affiliation(s)
- Peter D Watson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Gabriele Meizyte
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Philip A J Pearcy
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Edward I Brewer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Alice E Green
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Anthony J Stace
- School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Stuart R Mackenzie
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
2
|
Mikolaj P, Zamora Yusti B, Nyulászi L, Bakker JM, Höltzl T, Lang SM. CO 2 activation by copper oxide clusters: size, composition, and charge state dependence. Phys Chem Chem Phys 2024; 26:24126-24134. [PMID: 39253781 PMCID: PMC11385096 DOI: 10.1039/d4cp02651a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The interaction of CO2 with copper oxide clusters of different size, composition, and charge is investigated via infrared multiple-photon dissociation (IR-MPD) spectroscopy and density functional theory (DFT) calculations. Laser ablation of a copper target in the presence of an O2/He mixture leads to the preferred formation of oxygen-rich copper oxide cluster cations, CuxOy+ (y > x; x ≤ 8), while the anionic cluster distribution is dominated by stoichiometric (x = y) and oxygen-deficient (y < x; x ≤ 8) species. Subsequent reaction of the clusters with CO2 in a flow tube reactor results in the preferred formation of near-stoichiometric CuxOy(CO2)+/- complexes. IR-MPD spectroscopy of the formed complexes reveals the non-activated binding of CO2 to all cations while CO2 is activated by all anions. The great resemblance of spectra for all sizes investigated demonstrates that CO2 activation is largely independent of cluster size and Cu/O ratio but mainly determined by the cluster charge state. Comparison of the IR-MPD spectra with DFT calculations of the model systems Cu2O4(CO2)- and Cu3O4(CO2)- shows that CO2 activation exclusively results in the formation of a CO3 unit. Subsequent CO2 dissociation to CO appears to be unfavorable due to the instability of CO on the copper oxide clusters indicating that potential hydrogenation reactions will most likely proceed via formate or bicarbonate intermediates.
Collapse
Affiliation(s)
- Pavol Mikolaj
- Institute of Surface Chemistry and Catalysis, University of Ulm, Ulm 89069, Germany.
| | - Barbara Zamora Yusti
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegytem rkp. 3, Budapest-1111, Hungary
| | - László Nyulászi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegytem rkp. 3, Budapest-1111, Hungary
- HUN-REN-BME Computation Driven Chemistry research group, Műegytem rkp. 3, Budapest-1111, Hungary
| | - Joost M Bakker
- Radboud University, Institute of Molecules and Materials, FELIX Laboratory, 6525 ED, Nijmegen, The Netherlands
| | - Tibor Höltzl
- HUN-REN-BME Computation Driven Chemistry research group, Műegytem rkp. 3, Budapest-1111, Hungary
- Furukawa Electric Institute of Technology, Nanomaterials Science Group, Késmárk utca 28/A, Budapest 1158, Hungary.
| | - Sandra M Lang
- Institute of Surface Chemistry and Catalysis, University of Ulm, Ulm 89069, Germany.
| |
Collapse
|
3
|
Liu P, Han J, Yu H, Chen Y, Zhou X. Structural Study of [Sc 3O 4(CO 2) n] + ( n = 2, 3) Complexes by Infrared Photodissociation Spectroscopy and Density Functional Calculations. J Phys Chem A 2024; 128:7158-7166. [PMID: 39152915 DOI: 10.1021/acs.jpca.4c04163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The catalytic transformation of CO2 into valuable products has garnered wide interest owing to both economic and environmental benefits, in which the chemical fixation of CO2 into carbonate structures represents a crucial step that occurs on the adsorbed catalyst surfaces. Transition metal oxides with acidic and basic active sites have exhibited potential in promoting the carbonation of weakly bound CO2 molecules. Here, the interactions between CO2 molecules and the Sc3O4+ cation in the gas phase are investigated by using infrared photodissociation spectroscopy in conjunction with quantum chemical calculations. Both end-on and various carbonate-containing configurations, including center and bridge carbonate structures, have been theoretically identified for the CO2-coordinated ion-molecule complexes. Based on the comparison between the experimental spectra and simulated spectra of low-lying isomers in the CO2 antisymmetric stretching vibrational frequency region, isomers characterized by a bridge carbonate core structure are demonstrated to be the major contributors to the observed spectra. Examination of potential energy surfaces reveals lower energy barriers and simpler reaction routes for the conversion of molecularly bound CO2 into a bridge carbonate moiety, providing reasonable explanations for their prevalence in the experiments.
Collapse
Affiliation(s)
- Pengcheng Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Jia Han
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Haili Yu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yan Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoguo Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Watson PD, Meizyte G, Pearcy PAJ, Brewer EI, Green AE, Robertson C, Paterson MJ, Mackenzie SR. Infrared spectra and fragmentation dynamics of isotopologue-selective mixed-ligand complexes. Phys Chem Chem Phys 2024; 26:16589-16596. [PMID: 38814318 DOI: 10.1039/d4cp00978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Isolated mixed-ligand complexes provide tractable model systems in which to study competitive and cooperative binding effects as well as controlled energy flow. Here, we report spectroscopic and isotopologue-selective infrared photofragmentation dynamics of mixed gas-phase Au(12/13CO)n(N2O)m+ complexes. The rich infrared action spectra, which are reproduced well using simulations of calculated lowest energy structures, clarify previous ambiguities in the assignment of vibrational bands, especially accidental coincidence of CO and N2O bands. The fragmentation dynamics exhibit the same unexpected behaviour as reported previously in which, once CO loss channels are energetically accessible, these dominate the fragmentation branching ratios, despite the much lower binding energy of N2O. We have investigated the dynamics computationally by considering anharmonic couplings between a relevant subset of normal modes involving both ligand stretch and intermolecular modes. Discrepancies between correlated and uncorrelated model fit to the ab initio potential energy curves are quantified using a Boltzmann sampled root mean squared deviation providing insight into efficiency of vibrational energy transfer between high frequency ligand stretches and the softer intermolecular modes which break during fragmentation.
Collapse
Affiliation(s)
- Peter D Watson
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Gabriele Meizyte
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Philip A J Pearcy
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Edward I Brewer
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Alice E Green
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Christopher Robertson
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, Scotland, EH14 4AS, UK
| | - Martin J Paterson
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, Scotland, EH14 4AS, UK
| | - Stuart R Mackenzie
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| |
Collapse
|
5
|
Liu P, Han J, Chen Y, Yu H, Zhou X, Zhang W. Binding Strengths and Orientations in CO 2 Adsorption on Cationic Scandium Oxides: Governing Factor Revealed by a Combined Infrared Spectroscopy and Theoretical Study. J Phys Chem A 2024; 128:3007-3014. [PMID: 38581407 DOI: 10.1021/acs.jpca.4c01562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Carbon dioxide (CO2) adsorption is a critical step to curbing carbon emissions from fossil fuel combustion. Among various options, transition metal oxides have received extensive attention as promising CO2 adsorbents due to their affordability and sustainability for large-scale use. Here, the nature of binding interactions between CO2 molecules and cationic scandium oxides of different sizes, i.e., ScO+, Sc2O2+, and Sc3O4+, is investigated by mass-selective infrared photodissociation spectroscopy combined with quantum chemical calculations. The well-accepted electrostatic considerations failed to provide explanations for the trend in the binding strengths and variations in the binding orientations between CO2 and metal sites of cationic scandium oxides. The importance of orbital interactions in the driving forces for CO2 adsorption on cationic scandium oxides was revealed by energy decomposition analyses. A molecular surface property, known as the local electron attachment energy, is introduced to elucidate the binding affinity and orientation-specific reactivity of cationic scandium oxides upon the CO2 attachment. This study not only reveals the governing factor in the binding behaviors of CO2 adsorption on cationic scandium oxides but also serves as an archetype for predicting and rationalizing favorable binding sites and orientations in extended surface-adsorbate systems.
Collapse
Affiliation(s)
- Pengcheng Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Jia Han
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yan Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Haili Yu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoguo Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Weijun Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
6
|
Han J, Liu P, Qiu B, Wang G, Liu S, Zhou X. Observation of inserted oxocarbonyl species in the tantalum cation-mediated activation of carbon dioxide dictated by two-state reactivity. Dalton Trans 2023; 53:171-179. [PMID: 38018569 DOI: 10.1039/d3dt03593j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Reductive activation of carbon dioxide (CO2) has drawn increasing attention as an effective and convenient method to unlock this stable molecule, especially via transition metal-catalyzed reactions. Taking the [TaC4O8]+ ion-molecule complex formed in the laser ablation source as a representative, the reactivity of the tantalum metal cation towards CO2 molecules is explored using infrared photodissociation spectroscopy combined with quantum chemical calculations. The strong absorption in the carbonyl stretching region provides solid evidence for the insertion reactions into CO bonds by the tantalum cation. Two inserted oxocarbonyl products are identified based on the great agreement between the experimental results and simulated infrared spectra of energetically low-lying structures in the singlet and triplet states. The pivotal role of two-state reactivity in driving CO2 activation among three different spin states is rationalized by potential energy surface analysis. Our conclusion provides valuable insight into the intrinsic mechanisms of CO2 activation by the tantalum metal cation, highlighting the affinity of tantalum for CO bond insertion in addition to typical "end-on" binding configurations.
Collapse
Affiliation(s)
- Jia Han
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Pengcheng Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Binglin Qiu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Guanjun Wang
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Shilin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
7
|
Liu P, Han J, Chen Y, Lu S, Su Q, Zhou X, Zhang W. Carbon dioxide activation by discandium dioxide cations in the gas phase: a combined investigation of infrared photodissociation spectroscopy and DFT calculations. Phys Chem Chem Phys 2023. [PMID: 38048053 DOI: 10.1039/d3cp04995g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
We present a combined computational and experimental study of CO2 activation at the Sc2O2+ metal oxide ion center in the gas phase. Density functional theory calculations on the structures of [Sc2O2(CO2)n]+ (n = 1-4) ion-molecule complexes reveal a typical end-on binding motif as well as bidentate and tridentate carbonate-containing configurations. As the number of attached CO2 molecules increases, activated forms tend to dominate the isomeric populations. Distortion energies are unveiled to account for the conversion barriers from molecularly bound isomers to carbonate structures, and show a monotonically decreasing trend with successive CO2 ligand addition. The infrared photodissociation spectra of target ion-molecule complexes were recorded in the 2100-2500 cm-1 frequency region and interpreted by comparison with simulated IR spectra of low-lying isomers representing distinct configurations, demonstrating a high possibility of carbonate structure formation in current experiments.
Collapse
Affiliation(s)
- Pengcheng Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Jia Han
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Yan Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shun Lu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Quyan Su
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Weijun Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
8
|
Foreman MM, Stanton JF, Weber JM. Relation Between Bond Angle and Carbon-Oxygen Stretching Frequencies in CO 2-Containing Compounds. J Phys Chem A 2023; 127:9717-9722. [PMID: 37944122 DOI: 10.1021/acs.jpca.3c05082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The symmetric (νs) and antisymmetric (νas) O-C-O stretching modes of CO2-containing compounds encode structural information that can be difficult to decipher, due to the sensitivity of these spectral features to small shifts in charge distribution and structure, as well as the anharmonicities of these two vibrational modes. In this work, we discuss the relation between the frequency of these modes and the geometry of the O-C-O group, showing that the splitting between νs and νas (Δνas-s = νas - νs) can be predicted based only on the O-C-O bond angle obtained from quantum chemical calculations with reasonable accuracy (±46 cm-1, R2 = 0.994). The relationship is shown to hold for the infrared spectra of a variety of CO2-containing molecules measured in vacuo. The origins of this model are discussed in the framework of elementary mode analysis.
Collapse
Affiliation(s)
- Madison M Foreman
- JILA and Department of Chemistry, University of Colorado-Boulder, 440 UCB, Boulder, Colorado 80309-0440, United States
| | - John F Stanton
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - J Mathias Weber
- JILA and Department of Chemistry, University of Colorado-Boulder, 440 UCB, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
9
|
Meizyte G, Brown RH, Brewer EI, Watson PD, Mackenzie SR. A Combined Infrared and Computational Study of Gas-Phase Mixed-Ligand Rhodium Complexes: Rh(CO) n(N 2O) m+ ( n = 1-5, m = 1-4). J Phys Chem A 2023; 127:9220-9228. [PMID: 37906705 PMCID: PMC10641848 DOI: 10.1021/acs.jpca.3c05078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
In this study, mixed carbonyl and nitrous oxide complexes with Rh+ were studied by mass-selective infrared photodissociation spectroscopy in a molecular beam. The infrared spectra, recorded in the region of the CO and N2O N═N stretches, were assigned and interpreted with the aid of simulated spectra of low-energy structural isomers. Clear evidence of an inner coordination shell of four ligands is observed. The observed vibrational structure can be understood on the basis of local mode vibrations in the two ligands. However, there is also evidence of multiple low-lying isomers and cooperative binding effects between the two ligands. In particular, σ donation from directly coordinated nitrous oxide ligands drives more classical carbonyl bonding than has been observed in pure carbonyl complexes. The observed fragmentation branching ratios following resonant infrared absorption are explained by simple statistical and energetic arguments, providing a contrast with those of equivalent Au+ complexes.
Collapse
Affiliation(s)
- Gabriele Meizyte
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry
Laboratory, South Parks Road, Oxford, United Kingdom, OX1 3QZ
| | - Rachael H. Brown
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry
Laboratory, South Parks Road, Oxford, United Kingdom, OX1 3QZ
| | - Edward I. Brewer
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry
Laboratory, South Parks Road, Oxford, United Kingdom, OX1 3QZ
| | - Peter D. Watson
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry
Laboratory, South Parks Road, Oxford, United Kingdom, OX1 3QZ
| | - Stuart R. Mackenzie
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry
Laboratory, South Parks Road, Oxford, United Kingdom, OX1 3QZ
| |
Collapse
|
10
|
Milešević D, Popat D, Gellersen P, Liu Z, Stimson J, Robertson P, Green A, Vallance C. Design and characterization of an optical-fiber-coupled laser-induced desorption source for gas-phase dynamics experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:114105. [PMID: 37987631 DOI: 10.1063/5.0170080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Preparation of neutral non-volatile molecules intact in the gas phase for mass spectrometry or chemical dynamics experiments remains a challenge for many classes of molecules. Here, we report the design and characterization of a fiber-coupled laser-based thermal desorption source capable of preparing intact neutral molecules at high molecular densities in the gas phase for use in velocity-map imaging experiments. Within this source, the sample is deposited onto a thin tantalum foil. Irradiation of the foil from the reverse side by a focused laser beam leads to highly localized heating of the sample, resulting in desorption of a plume of molecules into the gas phase. The fiber-coupled design simplifies the alignment of the desorption laser beam, and the ability to rotate the foil relative to the fixed laser beam allows the sample to be continually refreshed under vacuum. We use 118 nm photoionization of three test molecules-uracil, adenine, and phenylalanine-to characterize the source and to demonstrate various aspects of its performance. These include the dependence of the velocity-map imaging performance on the size of the interaction region and the dependence of the laser-induced desorption source emission on desorption laser power and heating time. Signal levels recorded in these measurements are comparable to those we typically obtain in similar experiments using a pulsed supersonic molecular beam, and we, therefore, believe that the source has considerable potential for use in a wide range of chemical dynamics and other experiments.
Collapse
Affiliation(s)
- Dennis Milešević
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| | - Divya Popat
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| | - Paul Gellersen
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| | - Zhihao Liu
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| | - Joseph Stimson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| | - Patrick Robertson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| | - Andrew Green
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| | - Claire Vallance
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| |
Collapse
|
11
|
Han J, Yang Y, Qiu B, Liu P, Wu X, Wang G, Liu S, Zhou X. Infrared photodissociation spectroscopy of mass-selected [TaO 3(CO 2) n] + ( n = 2-5) complexes in the gas phase. Phys Chem Chem Phys 2023; 25:13198-13208. [PMID: 37129869 DOI: 10.1039/d3cp01384g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We report a joint experimental and theoretical study on the structures of gas-phase [TaO3(CO2)n]+ (n = 2-5) ion-molecule complexes. Infrared photodissociation spectra of mass-selected [TaO3(CO2)n]+ complexes were recorded in the frequency region from 2200 to 2450 cm-1 and assigned through comparing with the simulated infrared spectra of energetically low-lying structures derived from quantum chemical calculations. With the increasing number of attached CO2 molecules, the larger clusters show significantly enhanced fragmentation efficiency and a strong band appears at around 2350 cm-1 near the free CO2 antisymmetric stretching vibration band, indicating only a small perturbation of CO2 molecules on the secondary solvation sphere while higher frequency bands corresponding to the core structure remain largely unaffected. A core structure [TaO3(CO2)3]+ is identified to which subsequent CO2 ligands are weakly attached and the most favorable cluster growth path is verified to proceed on the triplet potential energy surface higher in energy than that of ground states. Theoretical exploration reveals a two-state reactivity (TSR) scenario in which the energetically favored triplet transition state crosses over the singlet ground state to form a TaO3+ core ion, providing new information on the cluster formation correlated with the reactivity of tantalum metal oxides towards CO2.
Collapse
Affiliation(s)
- Jia Han
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yang Yang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
| | - Binglin Qiu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Pengcheng Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xiangkun Wu
- Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Guanjun Wang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
| | - Shilin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
12
|
Salzburger M, Saragi RT, Wensink FJ, Cunningham EM, Beyer MK, Bakker JM, Ončák M, van der Linde C. Carbon Dioxide and Water Activation by Niobium Trioxide Anions in the Gas Phase. J Phys Chem A 2023; 127:3402-3411. [PMID: 37040467 PMCID: PMC10123662 DOI: 10.1021/acs.jpca.3c01394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Transition metals are important in various industrial applications including catalysis. Due to the current concentration of CO2 in the atmosphere, various ways for its capture and utilization are investigated. Here, we study the activation of CO2 and H2O at [NbO3]- in the gas phase using a combination of infrared multiple photon dissociation spectroscopy and density functional theory calculations. In the experiments, Fourier-transform ion cyclotron resonance mass spectrometry is combined with tunable IR laser light provided by the intracavity free-electron laser FELICE or optical parametric oscillator-based table-top laser systems. We present spectra of [NbO3]-, [NbO2(OH)2]-, [NbO2(OH)2]-(H2O) and [NbO(OH)2(CO3)]- in the 240-4000 cm-1 range. The measured spectra and observed dissociation channels together with quantum chemical calculations confirm that upon interaction with a water molecule, [NbO3]- is transformed to [NbO2(OH)2]- via a barrierless reaction. Reaction of this product with CO2 leads to [NbO(OH)2(CO3)]- with the formation of a [CO3] moiety.
Collapse
Affiliation(s)
- Magdalena Salzburger
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Rizalina T Saragi
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Frank J Wensink
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Ethan M Cunningham
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Joost M Bakker
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
13
|
Meizyte G, Pearcy PAJ, Watson PD, Brewer EI, Green AE, Doll M, Duda OA, Mackenzie SR. An Infrared Study of Gas-Phase Metal Nitrosyl Ion-Molecule Complexes. J Phys Chem A 2022; 126:9414-9422. [PMID: 36480929 PMCID: PMC9791661 DOI: 10.1021/acs.jpca.2c07228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present a combined experimental and quantum chemical study of gas-phase group 9 metal nitrosyl complexes, M(NO)n+ (M = Co, Rh, Ir). Experimental infrared photodissociation spectra of mass-selected ion-molecule complexes are presented in the region 1600 cm-1 to 2000 cm-1 which includes the NO stretch. These are interpreted by comparison with the simulated spectra of energetically low-lying structures calculated using density functional theory. A mix of linear and nonlinear ligand binding is observed, often within the same complex, and clear evidence of coordination shell closing is observed at n = 4 for Co(NO)n+ and Ir(NO)n+. Calculations of Rh(NO)n+ complexes suggest additional low-lying five-coordinate structures. In all cases, once a second coordination shell is occupied, new spectral features appear which are assigned to (NO)2 dimer moieties. Further evidence of such motifs comes from differences in the spectra recorded in the dissociation channels corresponding to single and double ligand loss.
Collapse
|
14
|
Al-Fatesh AS, Ibrahim AA, Fakeeha AH, Albaqi F, Anojaidi K, Albinali I, Abasaeed AE, Frusteri F, Mahmud SL, Abu-Dahrieh JK, Bagabas AA. Effect of Holmium Oxide Loading on Nickel Catalyst Supported on Yttria-Stabilized Zirconia in Methane Dry Reforming. ACS OMEGA 2022; 7:43700-43709. [PMID: 36506208 PMCID: PMC9730481 DOI: 10.1021/acsomega.2c04320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
The carbon dioxide reforming of methane has attracted attention from researchers owing to its possibility of both mitigating the hazards of reactants and producing useful chemical intermediates. In this framework, the activity of the nickel-based catalysts, supported by yttria-stabilized zirconia and promoted with holmium oxide (Ho2O3), was assessed in carbon dioxide reforming of methane at 800 °C. The catalysts were characterized by N2-physisorption, H2 temperature-programmed reduction, temperature-programmed desorption of CO2, X-ray diffraction, scanning electron microscopy (SEM) together with energy-dispersive X-ray spectroscopy, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) techniques. The effect of holmium oxide weight percent loading (0.0, 1.0, 2.0, 3,0, 4.0, and 5.0 wt %) was examined owing to its impact on the developed catalysts. The optimum loading of Ho2O3 was found to be 4.0 wt %, where the methane and carbon dioxide conversions were 85 and 91%, respectively. The nitrogen adsorption-desorption isotherms specified the mesoporous aspect of the catalysts, while the SEM images displayed a morphology of agglomerated, porous particles. The TEM images of the spent catalyst displayed the formation of multiwalled carbon nanotubes. TGA of the 4.0 wt % of Ho2O3 catalyst, experimented over 7-hour time-on-stream, displayed little weight loss (<14.0 wt %) owing to carbon formation, indicating the good resistance of the catalyst to carbon accumulation due to the enhancing ability of Ho2O3 and its adjustment of the support.
Collapse
Affiliation(s)
- Ahmed Sadeq Al-Fatesh
- Chemical
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh11421, Saudi Arabia
| | - Ahmed A. Ibrahim
- Chemical
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh11421, Saudi Arabia
| | - Anis H. Fakeeha
- Chemical
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh11421, Saudi Arabia
| | - Fahad Albaqi
- National
Petrochemical Technology Center (NPTC), Materials Science Research
Institute (MSRI), King Abdulaziz City for
Science and Technology (KACST), P.O. Box 6086, Riyadh11442, Saudi Arabia
| | - Khalid Anojaidi
- National
Petrochemical Technology Center (NPTC), Materials Science Research
Institute (MSRI), King Abdulaziz City for
Science and Technology (KACST), P.O. Box 6086, Riyadh11442, Saudi Arabia
| | - Ibrahim Albinali
- National
Petrochemical Technology Center (NPTC), Materials Science Research
Institute (MSRI), King Abdulaziz City for
Science and Technology (KACST), P.O. Box 6086, Riyadh11442, Saudi Arabia
| | - Ahmed E. Abasaeed
- Chemical
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh11421, Saudi Arabia
| | - Francesco Frusteri
- CNR-ITAE,
Istituto di Tecnologie Avanzate per Energia “Nicola Giordano”, Via S. Lucia sopra Contesse 5, 98126Messina, Italy
| | - Sofiu L. Mahmud
- Chemical
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh11421, Saudi Arabia
| | - Jehad K. Abu-Dahrieh
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, BelfastBT9 5AG, U.K.
| | - Abdulaziz A. Bagabas
- National
Petrochemical Technology Center (NPTC), Materials Science Research
Institute (MSRI), King Abdulaziz City for
Science and Technology (KACST), P.O. Box 6086, Riyadh11442, Saudi Arabia
| |
Collapse
|