1
|
Sarangi NK, Mondal S, Keyes TE. Receptor modulated assembly and drug induced disassembly of amyloid beta aggregates at asymmetric neuronal model biomembranes. Biophys Chem 2025; 322:107441. [PMID: 40185057 DOI: 10.1016/j.bpc.2025.107441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Amyloid peptide non-fibrillar oligomers cause neurotoxicity and may contribute to Alzheimer's disease (AD) pathogenesis. Mounting evidence indicates that Aβ1-42 oligomers disrupt and remodel neuronal membrane, causing neuronal cell death. The involvement of individual neuronal membrane constituents in real-time Aβ1-42 aggregate assembly is unclear due to complexity of neuronal cell membrane. We used non-Faradaic electrochemical impedance spectroscopy (EIS) to track monomeric Aβ1-42 peptide binding and aggregation pathways in real-time in asymmetric micropore suspended lipid bilayer membranes with anionic phospholipids and glycosphingolipids. Anionic DOPC:PIP2 pore suspended membrane showed pore-formation within 2 h of incubation, but peptide insertion occurred over 6 h, with an onset time of ∼6-8 h for peptide aggregation at the membrane surface. Among different gangliosides, peptide binding to GM1- and GM3-containing membranes did not result pore development, but receptor mediated peptide aggregation formation caused membrane admittance to decrease within 2 h. In contrast, partial peptide insertion in the membrane surface increases membrane admittance at GD1a and mixed GSL membranes, arresting aggregation. Time-lapsed AFM imaging at asymmetric solid supported lipid bilayers (aSLBs) corroborated EIS findings, capturing pore-formation and receptor mediated peptide assembly routes. Fluorescence lifetime imaging (FLIM) imaging and spatial resolved single-point fluorescence correlation spectroscopy (FCS) at aSLBs revealed membrane-peptide interaction, assembly, and peptide induced membrane reorganization. Treatment with antidepressants fluoxetine and imipramine therapeutics, in synergy, which are cost-effective and capable of crossing the central nervous system (CNS+), resulted in the disassembly of membrane mediated Aβ1-42 aggregates, but not fibrils. Overall, the data suggests that membrane-mediated aggregate disassembly at the correct timing of AD progression may halt or reverse amyloid assembly through the use of repurposed drugs.
Collapse
Affiliation(s)
- Nirod Kumar Sarangi
- School of Chemical Sciences, Dublin City University, Dublin 09, Ireland; Insight Centre for Data Analytics, Dublin City University, Dublin 09, Ireland
| | - Subrata Mondal
- School of Chemical Sciences, Dublin City University, Dublin 09, Ireland; Insight Centre for Data Analytics, Dublin City University, Dublin 09, Ireland
| | - Tia E Keyes
- School of Chemical Sciences, Dublin City University, Dublin 09, Ireland.
| |
Collapse
|
2
|
Tamulytė R, Baronaitė I, Šulskis D, Smirnovas V, Jankunec M. Pro-inflammatory S100A8 Protein Exhibits a Detergent-like Effect on Anionic Lipid Bilayers, as Imaged by High-Speed AFM. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2635-2647. [PMID: 39723944 PMCID: PMC11783366 DOI: 10.1021/acsami.4c18749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Neuronal cell death induced by cell membrane damage is one of the major hallmarks of neurodegenerative diseases. Neuroinflammation precedes the loss of neurons; however, whether and how inflammation-related proteins contribute to the loss of membrane integrity remains unknown. We employed a range of biophysical tools, including high-speed atomic force microscopy, fluorescence spectroscopy, and electrochemical impedance spectroscopy, to ascertain whether the pro-inflammatory protein S100A8 induces alterations in biomimetic lipid membranes upon interaction. Our findings underscore the crucial roles played by divalent cations and membrane charge. We found that apo-S100A8 selectively interacts with anionic lipid membranes composed of phosphatidylserine (PS), causing membrane disruption through a detergent-like mechanism, primarily affecting regions where phospholipids are less tightly packed. Interestingly, the introduction of Ca2+ ions inhibited S100A8-induced membrane disruption, suggesting that the disruptive effects of S100A8 are most pronounced under conditions mimicking intracellular compartments, where calcium levels are low, and PS concentrations in the inner leaflet of the membrane are high. Overall, our results present a mechanistic basis for understanding the molecular interactions between S100A8 and the plasma membrane, emphasizing S100A8 as a potential contributor to the onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rimgailė Tamulytė
- Institute
of Biochemistry, Life Sciences Center, Vilnius
University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania
| | - Ieva Baronaitė
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania
| | - Darius Šulskis
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania
| | - Vytautas Smirnovas
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania
| | - Marija Jankunec
- Institute
of Biochemistry, Life Sciences Center, Vilnius
University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania
| |
Collapse
|
3
|
Münch NS, Das S, Seeger S. Unveiling the effect of CaCl 2 on amyloid β aggregation via supercritical angle Raman and fluorescence spectroscopy and microscopy. Phys Chem Chem Phys 2024; 26:26266-26276. [PMID: 39371012 PMCID: PMC11456997 DOI: 10.1039/d4cp00996g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Amyloid β aggregation is an important factor in Alzheimer's disease. Since calcium homeostasis plays an important role in amyloid β aggregation, it is crucial to study the interaction between calcium ions and amyloid β directly at the surface of the lipid membrane. With supercritical angle techniques, the signal of interest at the surface is easily separated from the bulk solution, making them a powerful tool for aggregation study. In this work, the influence of calcium ions on amyloid β aggregation over different aggregation time periods is investigated with supercritical angle Raman and fluorescence spectroscopy and microscopy. Note that calcium ions have a larger influence on amyloid β1-42 than on the 40 amino acid variant. We found that a small layer of calcium ions significantly protects the lipid membrane against the protein insertion process.
Collapse
Affiliation(s)
- Nathalia Simea Münch
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Subir Das
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Stefan Seeger
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
4
|
Mei N, Liang J, McRae DM, Leonenko Z. Localized surface plasmon resonance and atomic force microscopy study of model lipid membranes and their interactions with amyloid and melatonin. NANOTECHNOLOGY 2024; 35:305101. [PMID: 38636478 DOI: 10.1088/1361-6528/ad403b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid plaques in the brain. The toxicity of amyloid to neuronal cell surfaces arises from interactions between small intermediate aggregates, namely amyloid oligomers, and the cell membrane. The nature of these interactions changes with age and disease progression. In our previous work, we demonstrated that both membrane composition and nanoscale structure play crucial roles in amyloid toxicity, and that membrane models mimicking healthy neuron were less affected by amyloid than model membranes mimicking AD neuronal membranes. This understanding introduces the possibility of modifying membrane properties with membrane-active molecules, such as melatonin, to protect them from amyloid-induced damage. In this study, we employed atomic force microscopy and localized surface plasmon resonance to investigate the protective effects of melatonin. We utilized synthetic lipid membranes that mimic the neuronal cellular membrane at various stages of AD and explored their interactions with amyloid-β(1-42) in the presence of melatonin. Our findings reveal that the early diseased membrane model is particularly vulnerable to amyloid binding and subsequent damage. However, melatonin exerts its most potent protective effect on this early-stage membrane. These results suggest that melatonin could act at the membrane level to alleviate amyloid toxicity, offering the most protection during the initial stages of AD.
Collapse
Affiliation(s)
- Nanqin Mei
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Jingwen Liang
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Danielle M McRae
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Zoya Leonenko
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
5
|
Sarangi NK, Prabhakaran A, Roantree M, Keyes TE. Evaluation of the passive permeability of antidepressants through pore-suspended lipid bilayer. Colloids Surf B Biointerfaces 2024; 234:113688. [PMID: 38128360 DOI: 10.1016/j.colsurfb.2023.113688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
HYPOTHESIS The antidepressant drug imipramine, and its metabolite desipramine show different extents of interaction with, and passive permeation through, cellular membrane models, with the effects depending on the membrane composition. Through multimodal interrogation, we can observe that the drugs have a direct impact on the physicochemical properties of the membrane, that may play a role in their pharmacokinetics. EXPERIMENTS Microcavity pore-suspended lipid bilayers (MSLBs) of four different compositions, each with a different headgroup charge namely; zwitterionic dioleoylphosphatidylcholine (DOPC), mixed DOPC and negatively charged dioleoylphosphatidylglycerol (DOPG) (3:1), mixed DOPC and positively charged dioleoyltrimethylammoniumpropane (DOTAP) (3:1), and with increasing complex composition mimicking blood-brain-barrier (BBB) were prepared on gold and polydimethylsiloxane (PDMS) substrates using a Langmuir-Blodgett-vesicle fusion method. The molecular interaction and permeation of antidepressants, imipramine, and its metabolite desipramine with the lipid bilayers were evaluated using highly sensitive label-free electrochemical impedance spectroscopy (EIS) and surface-enhanced Raman spectroscopy (SERS). Drug-induced membrane packing/fluidity alterations were assessed using fluorescence lifetime imaging (FLIM) and fluorescence lifetime correlation spectroscopy (FLCS) of MSLB over microfluidic PDMS array. FINDINGS Using EIS to evaluate in real-time membrane admittance changes, we found that imipramine greatly increases the ion permeability of negatively charged DOPC:DOPG (3:1) membranes. The effect was observed also at neutral (DOPC) and to a lesser extent at positively charged DOPC:DOTAP(3:1) membranes. In contrast, desipramine had a much weaker impact on ion permeability across all bilayer compositions. Temporal capacitance data show that desipramine intercalates at negatively charged membrane thereby increasing the thickness of the membrane. The overall kinetics of the imipramine permeation is higher than that of desipramine. This was confirmed using SERS, which also provides an evaluation of drug passive permeation based on arrival time across the membrane. Using FLCS, we found that imipramine increases the lipid membrane fluidity, whereas desipramine lowers it, with the exception of the negatively charged membrane. A translocation rate pharmacokinetics model was established for the first time at the MSLB platform by real-time monitoring of the variation in membrane resistance of pristine DOPC and blood-brain-barrier (BBB) membrane.
Collapse
Affiliation(s)
- Nirod Kumar Sarangi
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Amrutha Prabhakaran
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Mark Roantree
- Insight Centre for Data Analytics, School of Computing, Dublin City University, Dublin 9, Ireland
| | - Tia E Keyes
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
6
|
Huang Z. Evidence that Alzheimer's Disease Is a Disease of Competitive Synaptic Plasticity Gone Awry. J Alzheimers Dis 2024; 99:447-470. [PMID: 38669548 PMCID: PMC11119021 DOI: 10.3233/jad-240042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Mounting evidence indicates that a physiological function of amyloid-β (Aβ) is to mediate neural activity-dependent homeostatic and competitive synaptic plasticity in the brain. I have previously summarized the lines of evidence supporting this hypothesis and highlighted the similarities between Aβ and anti-microbial peptides in mediating cell/synapse competition. In cell competition, anti-microbial peptides deploy a multitude of mechanisms to ensure both self-protection and competitor elimination. Here I review recent studies showing that similar mechanisms are at play in Aβ-mediated synapse competition and perturbations in these mechanisms underpin Alzheimer's disease (AD). Specifically, I discuss evidence that Aβ and ApoE, two crucial players in AD, co-operate in the regulation of synapse competition. Glial ApoE promotes self-protection by increasing the production of trophic monomeric Aβ and inhibiting its assembly into toxic oligomers. Conversely, Aβ oligomers, once assembled, promote the elimination of competitor synapses via direct toxic activity and amplification of "eat-me" signals promoting the elimination of weak synapses. I further summarize evidence that neuronal ApoE may be part of a gene regulatory network that normally promotes competitive plasticity, explaining the selective vulnerability of ApoE expressing neurons in AD brains. Lastly, I discuss evidence that sleep may be key to Aβ-orchestrated plasticity, in which sleep is not only induced by Aβ but is also required for Aβ-mediated plasticity, underlining the link between sleep and AD. Together, these results strongly argue that AD is a disease of competitive synaptic plasticity gone awry, a novel perspective that may promote AD research.
Collapse
Affiliation(s)
- Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Sallaberry CA, Voss BJ, Stone WB, Estrada F, Bhatia A, Soto JD, Griffin CW, Vander Zanden CM. Curcumin Reduces Amyloid Beta Oligomer Interactions with Anionic Membranes. ACS Chem Neurosci 2023; 14:4026-4038. [PMID: 37906715 DOI: 10.1021/acschemneuro.3c00512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Many neurodegenerative diseases involve amyloidogenic proteins forming surface-bound aggregates on anionic membranes, and the peptide amyloid β (Aβ) in Alzheimer's disease is one prominent example of this. Curcumin is a small polyphenolic molecule that provides an interesting opportunity to understand the fundamental mechanisms of membrane-mediated aggregation because it embeds into membranes to alter their structure while also altering Aβ aggregation in an aqueous environment. The purpose of this work was to understand interactions among curcumin, β-sheet-rich Aβ fibrillar oligomers (FO), and a model anionic membrane. From a combination of liquid surface X-ray scattering experiments and molecular dynamics simulations, we found that curcumin embedded into an anionic 1,2-dimyristoyl-sn-glycero-3-phosphorylglycerol (DMPG) membrane to rest between the lipid headgroups and the tails, causing disorder and membrane thinning. FO accumulation on the membrane was reduced by ∼66% in the presence of curcumin, likely influenced by membrane thinning. Simulation results suggested curcumin clusters near exposed phenylalanine residues on a membrane-embedded FO structure. Altogether, curcumin inhibited FO interactions with a DMPG membrane, likely through a combination of altered membrane structure and interactions with the FO surface. This work elucidates the mechanism of curcumin as a small molecule that inhibits amyloidogenesis through a combination of both membrane and protein interactions.
Collapse
Affiliation(s)
- Chad A Sallaberry
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Barbie J Voss
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - William B Stone
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Fabiola Estrada
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Advita Bhatia
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - J Daniel Soto
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Charles W Griffin
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Crystal M Vander Zanden
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| |
Collapse
|