1
|
Kuriakose T, Sha H, Wang Q, Topcu G, Romain X, Yang S, Taylor RA. Plasmon-Enhanced Photo-Luminescence Emission in Hybrid Metal-Perovskite Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:608. [PMID: 40278473 PMCID: PMC12029369 DOI: 10.3390/nano15080608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/07/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025]
Abstract
Semiconductor photonic nanowires are critical components for nanoscale light manipulation in integrated photonic and electronic devices. Optimizing their optical performance requires enhanced photon conversion efficiency, for which a promising solution is to combine semiconductors with noble metals, using the surface plasmon resonance of noble metals to enhance the photon absorption efficiency. Here, we report plasmon-enhanced light emission in a hybrid nanowire device composed of perovskite semiconductor nanowires and silver nanoparticles formed using superfluid helium droplets. A cesium lead halide perovskite-based four-layer structure (CsPbBr3/PMMA/Ag/Si) effectively reduces the metal's plasmonic losses while ensuring efficient surface plasmon-photon coupling at moderate power. Microphotoluminescence and time-resolved spectroscopy techniques are used to investigate the optical properties and emission dynamics of carriers and excitons within the hybrid device. Our results demonstrate an intensity enhancement factor of 29 compared with pure semiconductor structures at 4 K, along with enhanced carrier recombination dynamics due to plasmonic interactions between silver nanoparticles and perovskite nanowires. This work advances existing approaches for exciting photonic nanowires at low photon densities, with potential applications in optimizing single-photon excitations and emissions for quantum information processing.
Collapse
Affiliation(s)
- Tintu Kuriakose
- Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Hao Sha
- School of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Qingyu Wang
- Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Gokhan Topcu
- School of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Xavier Romain
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Shengfu Yang
- School of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | | |
Collapse
|
2
|
Bohra M, Giaremis S, Ks A, Mathioudaki S, Kioseoglou J, Grammatikopoulos P. Ferromagnetic-Antiferromagnetic Coupling in Gas-Phase Synthesized M(Fe, Co, and Ni)-Cr Nanoparticles for Next-Generation Magnetic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403708. [PMID: 39316368 DOI: 10.1002/advs.202403708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/12/2024] [Indexed: 09/25/2024]
Abstract
Combining ferromagnetic-antiferromagnetic materials in nanoalloys (i.e., nanoparticles, NPs, containing more than one element) can create a diverse landscape of potential electronic structures. As a result, a number of their magnetic properties can be manipulated, such as the exchange bias between NP core and shell, the Curie temperature of nanoparticulated samples, or their magnetocaloric effect. In this work, such a family of materials (namely M-Cr NPs where M is Fe, Co, Ni, or some combination of them) is reviewed with respect to the tunability of their magnetic properties via optimized doping with Cr up to its solubility limit. To this end, gas-phase synthesis has proven a most effective method, allowing excellent control over the physical structure, composition, and chemical ordering of fabricated NPs by appropriately selecting various deposition parameters. Recent advances in this field (both experimental and computational) are distilled to provide a better understanding of the underlying physical laws and point toward new directions for cutting-edge technological applications. For each property, a relevant potential application is associated, such as memory cells and recording heads, induced hyperthermia treatment, and magnetic cooling, respectively, aspiring to help connect the output of fundamental and applied research with current real-world challenges.
Collapse
Affiliation(s)
- Murtaza Bohra
- Physics Department, School of Engineering, Mahindra University, Survey Number 62/1A, Bahadurpally Jeedimetla, Hyderabad, Telangana, 500043, India
| | - Stefanos Giaremis
- School of Physics, Department of Condensed Matter and Materials Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Center for Interdisciplinary Research & Innovation, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Abisegapriyan Ks
- Materials Science and Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China
| | | | - Joseph Kioseoglou
- School of Physics, Department of Condensed Matter and Materials Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Center for Interdisciplinary Research & Innovation, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Panagiotis Grammatikopoulos
- Materials Science and Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China
| |
Collapse
|
3
|
Wang Y, Goudeli E. The onset of aerosol Au nanoparticle crystallization: accretion & explosive nucleation. NANOSCALE 2024; 16:17942-17953. [PMID: 39189868 DOI: 10.1039/d4nr02359e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The crystallization of gold nanoparticles is investigated in the gas-phase by molecular dynamics (MD) that is most relevant to their synthesis by aerosol processes (flame, plasma, or cluster beam deposition). A particle size-dependent metastable region, 200-300 °C wide, is revealed between the melting and freezing points of Au. This region decreases as the MD heating or cooling rates decrease. Two separate stages, subcritical and supercritical cluster formation, are distinguished during isothermal crystallization of 2.5-11 nm Au nanoparticles at 500-1000 K. The degree of Au crystallization (face-centered cubic or hexagonal close-packing) is quantified based on the Au atom local crystalline disorder. The onset of crystallization is identified by the steep rise of the fraction of atoms that retain their crystallinity in the largest subcritical cluster, accompanied by a sharp drop of the amorphous fraction of the Au nanoparticle. Crystallization starts from, at least, one atom layer below the surface of the nanoparticle and then quickly expands to its surface and bulk. Two crystallization nucleation pathways are identified: (a) explosive nucleation well below the Au freezing point resulting in many small and broadly distributed crystals; and (b) accretion nucleation near the freezing point where narrowly distributed and larger crystals are formed that grow by accretion and coalescence. X-ray diffraction (XRD) patterns are generated by MD, from which the dynamics of crystal growth are elucidated, consistent with the literature and in excellent agreement with direct tracing of crystal sizes.
Collapse
Affiliation(s)
- Yi Wang
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, Zürich, CH-8092, Switzerland
- Center for Combustion Energy, Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Eirini Goudeli
- Department of Chemical Engineering, University of Melbourne, Melbourne, 3010, Australia.
| |
Collapse
|
4
|
Sosada-Ludwikowska F, Reiner L, Egger L, Lackner E, Krainer J, Wimmer-Teubenbacher R, Singh V, Steinhauer S, Grammatikopoulos P, Koeck A. Adjusting surface coverage of Pt nanocatalyst decoration for selectivity control in CMOS-integrated SnO 2 thin film gas sensors. NANOSCALE ADVANCES 2024; 6:1127-1134. [PMID: 38356629 PMCID: PMC10863709 DOI: 10.1039/d3na00552f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024]
Abstract
Smart gas-sensor devices are of crucial importance for emerging consumer electronics and Internet-of-Things (IoT) applications, in particular for indoor and outdoor air quality monitoring (e.g., CO2 levels) or for detecting pollutants harmful for human health. Chemoresistive nanosensors based on metal-oxide semiconductors are among the most promising technologies due to their high sensitivity and suitability for scalable low-cost fabrication of miniaturised devices. However, poor selectivity between different target analytes restrains this technology from broader applicability. This is commonly addressed by chemical functionalisation of the sensor surface via catalytic nanoparticles. Yet, while the latter led to significant advances in gas selectivity, nanocatalyst decoration with precise size and coverage control remains challenging. Here, we present CMOS-integrated gas sensors based on tin oxide (SnO2) films deposited by spray pyrolysis technology, which were functionalised with platinum (Pt) nanocatalysts. We deposited size-selected Pt nanoparticles (narrow size distribution around 3 nm) by magnetron-sputtering inert-gas condensation, a technique which enables straightforward surface coverage control. The resulting impact on SnO2 sensor properties for CO and volatile organic compound (VOC) detection via functionalisation was investigated. We identified an upper threshold for nanoparticle deposition time above which increased surface coverage did not result in further CO or VOC sensitivity enhancement. Most importantly, we demonstrate a method to adjust the selectivity between these target gases by simply adjusting the Pt nanoparticle deposition time. Using a simple computational model for nanocatalyst coverage resulting from random gas-phase deposition, we support our findings and discuss the effects of nanoparticle coalescence as well as inter-particle distances on sensor functionalisation.
Collapse
Affiliation(s)
| | - L Reiner
- Materials Center Leoben Forschung GmbH 8700 Leoben Austria
| | - L Egger
- Materials Center Leoben Forschung GmbH 8700 Leoben Austria
| | - E Lackner
- Materials Center Leoben Forschung GmbH 8700 Leoben Austria
| | - J Krainer
- Materials Center Leoben Forschung GmbH 8700 Leoben Austria
| | | | - V Singh
- Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST), Graduate University 904-0495 Okinawa Japan
| | - S Steinhauer
- Department of Applied Physics, KTH Royal Institute of Technology 106 91 Stockholm Sweden
| | - P Grammatikopoulos
- Materials Science and Engineering, Guangdong Technion - Israel Institute of Technology Shantou Guangdong 515063 China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology Shantou Guangdong 515063 China
| | - A Koeck
- Materials Center Leoben Forschung GmbH 8700 Leoben Austria
| |
Collapse
|