1
|
Li X, Nie L, Wu H, Zhang L, Yan D. Enhancing THz fingerprint detection by the stretchable substrate with a dielectric metagrating. APPLIED OPTICS 2023; 62:9028-9035. [PMID: 38108738 DOI: 10.1364/ao.501933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/01/2023] [Indexed: 12/19/2023]
Abstract
The terahertz (THz) wave contains abundant spectrum resources and is still in the early stages of development. It has great application potential in biomedical engineering and public security. However, in these areas there are difficulties to overcome like measuring the wide band absorption of a trace mount sample. In this paper, a THz absorption enhancing method is suggested by a multiplexing strategy. By gradually expanding the stretchable substrate of the dielectric metagrating with an oblique THz wave incidence, the resonance peak frequencies can cover the frequency range of 0.48-0.58 THz. Also, the corresponding envelope built by the peaks of the metagrating absorption spectrum with the 0.2 µm α-lactose film can demonstrate 71.55 times boosting compared to the original absorption amplitude of the film. The investigation witnesses possibilities for the detection of biomacromolecular materials.
Collapse
|
2
|
Yan D, Cui J, Li X, Zhang L, Li J, Lu W. Enhancement of wide-band trace terahertz absorption spectroscopy based on microstructures: a review. Phys Chem Chem Phys 2023; 25:31542-31553. [PMID: 37982714 DOI: 10.1039/d3cp04746f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Research on the interaction between nanoscale materials and light holds significant scientific significance for the development of fields such as optoelectronic conversion and biosensing. The study of micro- and nano-optics has produced numerous outstanding research achievements by utilizing the dielectric optical coupling mechanism and plasmon effects to enhance the interaction between light and matter. These findings have demonstrated tremendous potential for applications in the field of molecular fingerprint sensing. This review focuses on a retrospective analysis of recent research studies in the enhancement of wide-band trace terahertz absorption spectroscopy. The physical mechanisms of using waveguide structures, dielectric metasurfaces/meta-gratings, and spoof surface plasmon polaritons (SSPs) to improve the interaction between light and trace-amount matters are introduced. The new approaches and methods for enhancing broad-band terahertz absorption spectroscopy of trace samples using microstructure designs are discussed. Additionally, we elucidate the scientific ideas and exploratory achievements in enhancing terahertz fingerprint spectroscopy detection. Finally, we provide an outlook on the research and development direction and potential practical applications of absorption spectroscopy enhancement detection.
Collapse
Affiliation(s)
- Dexian Yan
- Centre for THz Research, China Jiliang University, Hangzhou 310018, Zhejiang, China.
- Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, Zhejiang, China
| | - Jing Cui
- Centre for THz Research, China Jiliang University, Hangzhou 310018, Zhejiang, China.
- Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, Zhejiang, China
| | - Xiangjun Li
- Centre for THz Research, China Jiliang University, Hangzhou 310018, Zhejiang, China.
- Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, Zhejiang, China
| | - Le Zhang
- Centre for THz Research, China Jiliang University, Hangzhou 310018, Zhejiang, China.
- Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, Zhejiang, China
| | - Jining Li
- College of Precision Instrument and Optoelectronic Engineering, Tianjin University, Tianjin 300072, China
| | - Wenxin Lu
- College of Information and Communication, National University of Defense Technology, Wuhan, 430010, Hubei, China
| |
Collapse
|
3
|
Li X, Ding D, Yan D, Liu J, Zhang L. Boosting of the terahertz absorption spectrum based on one-dimensional plastic photonic crystals. Phys Chem Chem Phys 2023; 25:21324-21330. [PMID: 37528802 DOI: 10.1039/d3cp02809g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Although terahertz (THz) spectroscopy exhibits a broad application potential in the field of fingerprint sensing and detection, there remain some limitations with the conventional sensing methods for analyzing trace analytes. In this study, a terahertz absorption spectrum boosting method based on the defect one-dimensional (1D) plastic photonic crystal (PPC) structure is proposed to improve the interaction between the terahertz wave and the trace samples. Affected by the Fabry Perot resonance, the local electric field in thin film analytes will be improved. Furthermore, the resonant frequency will be varied by changing the defect width of the 1D PPC. The structure of the uniform planar film sample is easily built and measured. The boosted terahertz absorption spectrum can be obtained by linking the resonant absorption peaks. For the 0.2 μm α-lactose films, a large absorption enhancement factor of about 105 times can be achieved, which has great potential in identifying different analytes. The study performed here gives a novel investigation direction for boosting the broad terahertz absorption spectrum of trace amounts of analytes.
Collapse
Affiliation(s)
- Xiangjun Li
- Centre for THz Research, China Jiliang University, Hangzhou 310018, Zhejiang, China.
- Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, Zhejiang, China
| | - Ding Ding
- Centre for THz Research, China Jiliang University, Hangzhou 310018, Zhejiang, China.
| | - Dexian Yan
- Centre for THz Research, China Jiliang University, Hangzhou 310018, Zhejiang, China.
- Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, Zhejiang, China
| | - Jianjun Liu
- Centre for THz Research, China Jiliang University, Hangzhou 310018, Zhejiang, China.
- Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, Zhejiang, China
| | - Le Zhang
- Centre for THz Research, China Jiliang University, Hangzhou 310018, Zhejiang, China.
- Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, Zhejiang, China
| |
Collapse
|