Kim H, Morales JA. Testing standard basis sets for direct ionizations: H
+ + H at E
Lab = 0.1-100 keV.
J Comput Chem 2024;
45:671-682. [PMID:
38095321 PMCID:
PMC10922339 DOI:
10.1002/jcc.27272]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 03/02/2024]
Abstract
With the simplest-level electron nuclear dynamics (SLEND) method, we test standard Slater-type-orbital/contracted-Gaussian-functions (STO/CGFs) basis sets for the simulation of direct ionizations (DIs), charge transfers (CTs), and target excitations (TEs) in H+ + H at ELab = 0.1-100 keV. SLEND is a time-dependent, variational, on-the-fly, and nonadiabatic method that treats nuclei and electrons with classical dynamics and a Thouless single-determinantal state, respectively. While previous tests for CTs and TEs exist, this is the first SLEND/STO/CGFs test for challenging DIs. Spin-orbitals with negative/positive energies are treated as bound/unbound states for bound-to-bound (CT and TE) and bound-to-unbound (DI) transitions. SLEND/STO/CGFs simulations correctly reproduce all the features of DIs, CTs and TEs over all the considered impact parameters and energies. SLEND/STO/CGFs simulations correctly predict CT integrals cross-sections (ICSs) over all the considered energies and predict satisfactory DI and TE ICSs within some energy ranges. Strategies to improve SLEND/STO/CGFs for DI predictions are discussed.
Collapse