1
|
Huang H, Wang J, Liu Y, Zhao M, Zhang N, Hu Y, Fan F, Feng J, Li Z, Zou Z. Stacking textured films on lattice-mismatched transparent conducting oxides via matched Voronoi cell of oxygen sublattice. NATURE MATERIALS 2024; 23:383-390. [PMID: 38062169 DOI: 10.1038/s41563-023-01746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 10/31/2023] [Indexed: 12/24/2023]
Abstract
Transparent conducting oxides are a critical component in modern (opto)electronic devices and solar energy conversion systems, and forming textured functional films on them is highly desirable for property manipulation and performance optimization. However, technologically important materials show varied crystal structures, making it difficult to establish coherent interfaces and consequently the oriented growth of these materials on transparent conducting oxides. Here, taking lattice-mismatched hexagonal α-Fe2O3 and tetragonal fluorine-doped tin oxide as the example, atomic-level investigations reveal that a coherent ordered structure forms at their interface, and via an oxygen-mediated dimensional and chemical-matching manner, that is, matched Voronoi cells of oxygen sublattices, [110]-oriented α-Fe2O3 films develop on fluorine-doped tin oxide. Further measurements of charge transport characteristics and photoelectronic effects highlight the importance and advantages of coherent interfaces and well-defined orientation in textured α-Fe2O3 films. Textured growth of lattice-mismatched oxides, including spinel Co3O4, fluorite CeO2, perovskite BiFeO3 and even halide perovskite Cs2AgBiBr6, on fluorine-doped tin oxide is also achieved, offering new opportunities to develop high-performance transparent-conducting-oxide-supported devices.
Collapse
Affiliation(s)
- Huiting Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Jun Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory for Nano Technology, School of Physics, Nanjing University, Nanjing, People's Republic of China
| | - Yong Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | - Minyue Zhao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Ningsi Zhang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Yingfei Hu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory for Nano Technology, School of Physics, Nanjing University, Nanjing, People's Republic of China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | - Jianyong Feng
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, People's Republic of China.
| | - Zhaosheng Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, People's Republic of China.
- Jiangsu Key Laboratory for Nano Technology, School of Physics, Nanjing University, Nanjing, People's Republic of China.
| | - Zhigang Zou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory for Nano Technology, School of Physics, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Zhang G, Lu C, Li C, Li S, Zhao X, Nie K, Wang J, Feng K, Zhong J. CoMoO 4-modified hematite with oxygen vacancies for high-efficiency solar water splitting. Phys Chem Chem Phys 2023; 25:13410-13416. [PMID: 37161656 DOI: 10.1039/d3cp01192e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Hematite is a potential photoelectrode for photoelectrochemical (PEC) water splitting. Nevertheless, its water oxidation efficiency is highly limited by its significant photogenerated carrier recombination, poor conductivity and slow water oxidation kinetics. Herein, under low-vacuum (LV) conditions, we fabricated a CoMoO4 layer on oxygen-vacancy-modified hematite (CoMo-Fe2O3 (LV)) for the first time for efficient solar water splitting. The existence of oxygen vacancies can significantly facilitate the electrical conductivity, while the large onset potential along with oxygen vacancies can be lowered by the CoMoO4 with accelerated water oxidation kinetics. Therefore, a high photocurrent density of 3.53 mA cm-2 at 1.23 VRHE was obtained for the CoMo-Fe2O3 (LV) photoanode. Moreover, it can be further coupled with the FeNiOOH co-catalyst to reach a benchmark photocurrent of 4.18 mA cm-2 at 1.23 VRHE, which is increased around 4-fold compared with bare hematite (0.90 mA cm-2). The combination of CoMoO4, FeNiOOH, and oxygen vacancies may be used as a reasonable strategy for developing high-efficiency hematite-based photoelectrodes for solar water oxidation.
Collapse
Affiliation(s)
- Gaoteng Zhang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| | - Cheng Lu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| | - Chang Li
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| | - Shuo Li
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| | - Xiaoquan Zhao
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| | - Kaiqi Nie
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaou Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Feng
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| | - Jun Zhong
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| |
Collapse
|