1
|
Zhu ZH, Wu XY, Lu JF, Xu H, Hou SL, Zhao J, Liu SJ, Wen HR. MXene-Regulated Indium-Based Metal-Organic Framework Material for Electrochemical Reduction of CO 2 into Pure Formic Acid Aqueous Solution. Inorg Chem 2025; 64:8261-8269. [PMID: 40219954 DOI: 10.1021/acs.inorgchem.5c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Electrochemical CO2 reduction reaction provides a mild avenue for resource utilization of CO2. Metal-organic framework (MOF) materials are considered among the promising catalysts due to unique structural advantages. However, the catalytic performance of MOFs is hindered by poor conductivity, making it crucial to enhance the charge transfer for improved efficiency. Herein, a hybrid catalyst was constructed based on the In-based porphyrin framework (In-TCPP) and conducting MXene nanosheets for efficient CO2 conversion. As expected, MXene as a unique conductive support significantly improves the catalytic performance of the hybrid material, achieving a Faraday efficiency for HCOO- of 94.0% with a 2.2-fold increase in the practical current density. Furthermore, a pure formic acid solution with a concentration of ca. 0.22 M was prepared via execution in a solid-state electrolyte-mediated MEA (MEA-SSE) device. Theoretical calculations and in situ ATR-FTIR spectra reveal that the introduction of MXene not only endows the hybrid material with metallic properties to facilitate charge transfer but also modulates the electronic structure to optimize the adsorption of the key intermediate *OCHO. This work enlightens the rational design of MOF-based electrocatalysts via the regulation of MXene and demonstrates the promise of the MEA-SSE device for practical CO2 reduction applications.
Collapse
Affiliation(s)
- Zi-Hao Zhu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
- China Tin Grp Co., Ltd., Liuzhou 545000, P.R. China
| | - Xin-Yu Wu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
| | - Jian-Feng Lu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
| | - Hui Xu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
| | - Sheng-Li Hou
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P.R. China
| | - Jian Zhao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P.R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
| |
Collapse
|
2
|
Gupta N, Chatterjee S. Integrated Capture and Electrocatalytic Conversion of CO 2: A Molecular Electrocatalysts Perspective. Chem Asian J 2025:e202401611. [PMID: 40256821 DOI: 10.1002/asia.202401611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025]
Abstract
The ever-increasing concentration of atmospheric CO2, primarily driven by anthropogenic activities, has raised urgent environmental concerns, spurring the development of carbon capture and utilization (CCU) technologies. This review focuses on the integrated capture and electrochemical conversion of CO2 (ICECC), a promising approach that combines carbon capture with its direct electroreduction into value-added products. By eliminating energy-intensive steps such as CO2 release, compression, and transportation, ICECC offers a more energy-efficient and cost-effective alternative to conventional CCU methods. In this review, particular attention is given to molecular electrocatalysts, which offer high tunability and selectivity in electrochemical CO2 reduction reaction (eCO2RR). The role of capturing agents, including both external and dual-functional molecular systems, is critically examined to understand their influence on CO2 binding and catalytic efficiency. Whereas ICECC has significant potential, research in this area remains underexplored compared to conventional CO2 reduction methods. The review discusses the mechanistic insights into ICECC processes, highlighting key challenges and potential future research directions for improving catalyst design, enhancing capture efficiency, and scaling up ICECC technologies. These developments can make ICECC a critical component in achieving carbon neutrality and addressing climate change.
Collapse
Affiliation(s)
- Neha Gupta
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Zuarinagar, Sancaole, Goa, 403726, India
| | - Sudipta Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Zuarinagar, Sancaole, Goa, 403726, India
| |
Collapse
|
3
|
Luo D, Dai W, Wu K, Liu S, Tang C, Sun Y, Dong F, Long C. Cu-based bimetallic catalysts for electrochemical CO 2 reduction: before and beyond the tandem effect. NANOSCALE 2025; 17:9057-9071. [PMID: 40111958 DOI: 10.1039/d4nr04790g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) is a promising approach for carbon reduction and the production of high-value chemicals. Among the various catalysts, Cu-based bimetallic catalysts have recently attracted significant attention due to their superior catalytic activity, often outperforming pure Cu counterparts, owing to the discovery of the tandem effect. This review provides an in-depth discussion of the development of Cu-based bimetallic catalysts for CO2RR over the past decades, with the discovery, understanding, and evolution of the tandem effect serving as the central thematic thread. Important milestone works have been reviewed and organized in a roughly historical manner to highlight the development of cutting-edge understanding and the remaining challenges in this field. We believe this review will help the research community clearly track the progress from the original to the latest findings and identify key insights for Cu-based bimetallic catalysts for CO2RR.
Collapse
Affiliation(s)
- Dimiao Luo
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, P. R. China.
| | - Weidong Dai
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, P. R. China.
| | - Keying Wu
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, P. R. China.
| | - Siyuan Liu
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, P. R. China.
| | - Chiyao Tang
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, P. R. China
| | - Yanjuan Sun
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, P. R. China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, P. R. China.
| | - Chang Long
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, P. R. China.
| |
Collapse
|
4
|
Wen G, Sun L, Qin Y, Liu S, Ma L, Zhang N, Liu S, Yin Y, Ren B, Wang S. COF-Assisted Construction of Steric Mass-Charge Channels to Boost Activity for High-Performance Fuel Cells. Angew Chem Int Ed Engl 2025; 64:e202424179. [PMID: 39831353 DOI: 10.1002/anie.202424179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
The two-dimensional lamellar materials disperse platinum sites and minimize noble-metal usage for fuel cells, while mass transport resistance at the stacked layers spurs device failure with a significant performance decline in membrane electrode assembly (MEA). Herein, we implant porous and rigid sulfonated covalent organic frameworks (COF) into the graphene-based catalytic layer for the construction of steric mass-charge channels, which highly facilitates the activity of oxygen reduction reactions in both the rotating disk electrode (RDE) measurements and MEA device tests. Specifically, the normalized mass activity is remarkably boosted by 3.7 times to 1.56 A mgpt -1 after additions of suitable COF modifications in the RDE tests. Especially, an excellent maximum power density of 1.015 W cm-2 is realized on the MEA in H2/Air condition, representing a 22 % improvement through such constructions of steric mass-charge channels. Meanwhile, the open-circuit voltage of fuel cells demonstrates only 0.8 % reductions after 10,000 cycles of stability tests. We further extended such methodology of constructing mass-charge channels to granular PtCo and commercial Pt/C catalysts, which demonstrates a significant impetus for stimulating the catalytic activity in fuel cells.
Collapse
Affiliation(s)
- Guobin Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Hunan University, Changsha, 410082, China
| | - Liancheng Sun
- State Key Laboratory of Engines, Tianjin University, Tianjin, 300072, China
| | - Yanzhou Qin
- State Key Laboratory of Engines, Tianjin University, Tianjin, 300072, China
| | - Shengnan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Hunan University, Changsha, 410082, China
| | - Luyao Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Hunan University, Changsha, 410082, China
| | - Ningce Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Hunan University, Changsha, 410082, China
| | - Shuxuan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Hunan University, Changsha, 410082, China
| | - Yan Yin
- State Key Laboratory of Engines, Tianjin University, Tianjin, 300072, China
| | - Bohua Ren
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Hunan University, Changsha, 410082, China
| |
Collapse
|
5
|
Gautam M, Nkurunziza F, Muchharla B, Kumar B, Spurgeon JM. Understanding Electrochemical CO 2 Reduction through Differential Electrochemical Mass Spectrometry. Anal Chem 2025; 97:5372-5392. [PMID: 40042357 DOI: 10.1021/acs.analchem.4c02976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The electrochemical reduction of CO2 powered by renewable energy is a viable pathway to produce valuable fuels and chemicals, while simultaneously helping to mitigate greenhouse gas emissions. The strong research interest in improving the selectivity and efficiency of CO2 reduction has led to a multitude of electrocatalyst studies that employ a variety of electrochemical, spectroscopic, spectrometric, and materials characterization analytical techniques. Among these, differential electrochemical mass spectrometry (DEMS) has become an increasingly instrumental tool for investigating electrocatalyst performance by enabling in situ volatile product detection. DEMS has the significant advantages of being able to rapidly screen product distributions in real time as the potential is varied and distinguishing isotopically labeled species for mechanistic studies. There are also challenges for employing DEMS to study CO2 reduction, including cell design limitations for optimal mass transport and high product ion current signal, a lack of nonvolatile product detection, and the difficulty of extracting reliable, quantitative faradaic efficiency measurements. Many researchers have applied DEMS to study the reduction of CO2 on numerous catalysts under a variety of conditions, highlighting cell designs and protocols for overcoming some of these challenges. This review focuses on the implementation of DEMS in the study of electrochemical CO2 reduction, explaining the working principle and the various commonly employed cell designs and highlighting the findings of key reports that were enabled by DEMS.
Collapse
Affiliation(s)
- Manu Gautam
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, United States
| | - Francois Nkurunziza
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, United States
| | - Baleeswaraiah Muchharla
- Department of Mathematics, Computer Science and Engineering Technology, Elizabeth City State University, Elizabeth City, North Carolina 27909, United States
| | - Bijandra Kumar
- Department of Mathematics, Computer Science and Engineering Technology, Elizabeth City State University, Elizabeth City, North Carolina 27909, United States
| | - Joshua M Spurgeon
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
6
|
Nkurunziza F, Dongare S, Chatterjee S, Shah B, Gautam M, Muchharla B, Kumar B, Janik MJ, Gurkan B, Sacci RL, Spurgeon JM. Alkali Cation Inhibition of Imidazolium-Mediated Electrochemical CO 2 Reduction on Silver. J Am Chem Soc 2025; 147:7564-7577. [PMID: 39984294 DOI: 10.1021/jacs.4c16635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Imidazolium-based ionic liquids have led to enhanced CO2 electroreduction activity due to cation effects at the cathode surface, stabilizing the reaction intermediates and decreasing the activation energy. In aqueous media, alkali cations are also known to improve CO2 reduction activity on metals such as Ag, with the enhancement attributed to electrical double layer effects and trending with the size of the alkali cation. However, the effect of a mixed catholyte solution of alkali cations in the presence of an imidazolium-based ionic liquid has not been well-explored. Herein, 1-ethyl-3-methylimidazolium tetrafluoroborate, [EMIM][BF4], in water was investigated with alkali salts to unravel the interaction effects for CO2 electroreduction on Ag. Although both [EMIM]+ and alkali cations have individually improved CO2 to CO conversion on Ag in water, electrochemical results showed that alkali cations hindered imidazolium-mediated CO2 electroreduction in most conditions. Li+, in particular, was sharply inhibitory compared to other alkali cations and strongly redirected the selectivity to hydrogen evolution. The nature of the alkali cation inhibition was investigated with spectroscopic techniques, including in situ surface-enhanced Raman spectroscopy (SERS) and dynamic electrochemical impedance spectroscopy (DEIS). Along with computational insights from density functional theory (DFT), the electrochemical and spectroscopic data suggest that alkali cations inhibit [EMIM]-mediated CO2 reduction by competing for surface adsorption sites, preventing the potential-dependent structural reorientation of imidazolium, and promoting hydrogen evolution by bringing solvated water to the cathode surface.
Collapse
Affiliation(s)
- Francois Nkurunziza
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, United States
| | - Saudagar Dongare
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Soumya Chatterjee
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bhavi Shah
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, United States
| | - Manu Gautam
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, United States
| | - Baleeswaraiah Muchharla
- Department of Mathematics, Computer Science and Engineering Technology, Elizabeth City State University, Elizabeth City, North Carolina 27909, United States
| | - Bijandra Kumar
- Department of Mathematics, Computer Science and Engineering Technology, Elizabeth City State University, Elizabeth City, North Carolina 27909, United States
| | - Michael J Janik
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Burcu Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Joshua M Spurgeon
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
7
|
Hu XM, Liang HQ, Rosas-Hernández A, Daasbjerg K. Electrochemical valorization of captured CO 2: recent advances and future perspectives. Chem Soc Rev 2025; 54:1216-1250. [PMID: 39655650 DOI: 10.1039/d4cs00480a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The excessive emission of CO2 has led to severe climate change, prompting global concern. Capturing CO2 and converting it through electrochemistry into value-added products represent promising approaches to mitigating CO2 emissions and closing the carbon cycle. Traditionally, these two processes have been performed independently, involving multiple steps, high energy consumption, and low efficiency. Recently, the electrochemical conversion of captured CO2, which integrates the capture and conversion processes (also referred to as electrochemically reactive CO2 capture), has garnered increasing attention. This integrated approach bypasses the energy-intensive steps involved in the traditional independent process, including CO2 release, purification, compression, transportation, and storage. In this review, we discuss recent advances in the electrochemical conversion of captured CO2, focusing on four key aspects. First, we introduce various capture media, emphasizing the thermodynamic aspects of carbon capture and their implications for integration with electrochemical conversion. Second, we discuss product control mediated by the selection of different catalysts, highlighting the connections between the conversion of captured CO2 and gas-fed CO2. Third, we examine the effect of reactor systems and operational conditions on the electrochemical conversion of captured CO2, shedding light on performance optimization. Finally, we explore real integration systems for CO2 capture and electrochemical conversion, revealing the potential of this new technology for practical applications. Overall, we provide insights into the existing challenges, potential solutions, and thoughts on opportunities and future directions in the emerging field of electrochemical conversion of captured CO2.
Collapse
Affiliation(s)
- Xin-Ming Hu
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| | - Hong-Qing Liang
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Alonso Rosas-Hernández
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Novo Nordisk Foundation (NNF) CO2 Research Center, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark.
| | - Kim Daasbjerg
- Novo Nordisk Foundation (NNF) CO2 Research Center, Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark.
| |
Collapse
|
8
|
Xie W, Li B, Liu L, Li H, Yue M, Niu Q, Liang S, Shao X, Lee H, Lee JY, Shao M, Wang Q, O'Hare D, He H. Advanced systems for enhanced CO 2 electroreduction. Chem Soc Rev 2025; 54:898-959. [PMID: 39629562 DOI: 10.1039/d4cs00563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Carbon dioxide (CO2) electroreduction has extraordinary significance in curbing CO2 emissions while simultaneously producing value-added chemicals with economic and environmental benefits. In recent years, breakthroughs in designing catalysts, optimizing intrinsic activity, developing reactors, and elucidating reaction mechanisms have continuously driven the advancement of CO2 electroreduction. However, the industrialization of CO2 electroreduction remains a challenging task, with high energy consumption, high costs, limited reaction products, and restricted application scenarios being the issues that urgently need to be addressed. To accelerate the progress of CO2 electroreduction towards practical application, this review shifts the research focus from catalysts to aspects such as reactions and systems, aiming to improve reaction efficiency, reduce technical costs, expand the range of products, and enhance selectivity, offering readers a new perspective. In particular, innovative and specific design strategies such as CO2 reduction coupled with alternative oxidation, co-reduction reaction of CO2 and C/N/O/S-containing species, cascade systems, and integrated CO2 capture and reduction systems are discussed in detail. Additionally, personal views on the opportunities and future challenges of the aforementioned innovative strategies are provided, offering new insights for the future research and development of CO2 electroreduction.
Collapse
Affiliation(s)
- Wenfu Xie
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
| | - Bingkun Li
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
| | - Lu Liu
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
| | - Hao Li
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Mingzhu Yue
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
| | - Qingman Niu
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
| | - Shuyu Liang
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
| | - Xiaodong Shao
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Hyoyoung Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Mingfei Shao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiang Wang
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
| | - Dermot O'Hare
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, UK
| | - Hong He
- Laboratory of Atmospheric Environment and Pollution Control, Research Center for EcoEnvironmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| |
Collapse
|
9
|
Neves-Garcia T, Hasan M, Zhu Q, Li J, Jiang Z, Liang Y, Wang H, Rossi LM, Warburton RE, Baker LR. Integrated Carbon Dioxide Capture by Amines and Conversion to Methane on Single-Atom Nickel Catalysts. J Am Chem Soc 2024; 146:31633-31646. [PMID: 39503164 DOI: 10.1021/jacs.4c09744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Direct electrochemical reduction of carbon dioxide (CO2) capture species, i.e., carbamate and (bi)carbonate, can be promising for CO2 capture and conversion from point-source, where the energetically demanding stripping step is bypassed. Here, we describe a class of atomically dispersed nickel (Ni) catalysts electrodeposited on various electrode surfaces that are shown to directly convert captured CO2 to methane (CH4). A detailed study employing X-ray photoelectron spectroscopy (XPS) and electron microscopy (EM) indicate that highly dispersed Ni atoms are uniquely active for converting capture species to CH4, and the activity of single-atom Ni is confirmed using control experiments with a molecularly defined Ni phthalocyanine catalyst supported on carbon nanotubes. Comparing the kinetics of various capture solutions obtained from hydroxide, ammonia, primary, secondary, and tertiary amines provide evidence that carbamate, rather than (bi)carbonate and/or dissolved CO2, is primarily responsible for CH4 production. This conclusion is supported by 13C nuclear magnetic resonance (NMR) spectroscopy of capture solutions as well as control experiments comparing reaction selectivity with and without CO2 purging. These findings are understood with the help of density functional theory (DFT) calculations showing that single-atom nickel (Ni) dispersed on gold (Au) is active for the direct reduction of carbamate, producing CH4 as the primary product. This is the first example of direct electrochemical conversion of carbamate to CH4, and the mechanism of this process provides new insight on the potential for integrated capture and conversion of CO2 directly to hydrocarbons.
Collapse
Affiliation(s)
- Tomaz Neves-Garcia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | - Mahmudul Hasan
- Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Quansong Zhu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jing Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Zhan Jiang
- Shenzhen Key Laboratory of Printed Electronics, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yongye Liang
- Shenzhen Key Laboratory of Printed Electronics, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Liane M Rossi
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | | | - L Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
10
|
Zhao Y, Huo J, Wang X, Ma S. Potassium-Based Solid Sorbents for CO 2 Adsorption: Key Role of Interconnected Pores. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1838. [PMID: 39591078 PMCID: PMC11597530 DOI: 10.3390/nano14221838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
Industrial CO2 emissions contribute to pollution and greenhouse effects, highlighting the importance of carbon capture. Potassium carbonate (K2CO3) is an effective CO2 absorbent, yet its liquid-phase absorption faces issues like diffusion resistance and corrosion risks. In this work, the solid adsorbents were developed with K2CO3 immobilized on the selected porous supports. Al2O3 had an optimum CO2 adsorption capacity of 0.82 mmol g-1. After further optimization of its pore structure, the self-prepared support Al2O3-2, which has an average pore diameter of 11.89 nm and a pore volume of 0.59 cm3 g-1, achieved a maximum CO2 adsorption capacity of 1.12 mmol g-1 following K2CO3 impregnation. Additionally, the relationship between support structure and CO2 adsorption efficiency was also analyzed. The connectivity of the pores and the large pore diameter of the support may play a key role in enhancing CO2 adsorption performance. During 10 cycles of testing, the K2CO3-based adsorbents demonstrated consistent high CO2 adsorption capacity with negligible degradation.
Collapse
Affiliation(s)
- Yuan Zhao
- Tianjin College, University of Science and Technology Beijing, Tianjin 301830, China; (Y.Z.)
| | - Jiangbo Huo
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xuefei Wang
- Tianjin College, University of Science and Technology Beijing, Tianjin 301830, China; (Y.Z.)
| | - Shunwei Ma
- Tianjin College, University of Science and Technology Beijing, Tianjin 301830, China; (Y.Z.)
| |
Collapse
|
11
|
Li G, Zhang C, Liu Y, Song Y, Guo W, Huang L, Su J, Zhang Q, Xin Y, Feng T, Cao X, He M, Kwok TK, Lam JWY, Jin Z, Tang BZ, Wang Z, Ye R. Molecular Engineering of Poly(Ionic Liquid) for Direct and Continuous Production of Pure Formic Acid from Flue Gas. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409390. [PMID: 39344856 DOI: 10.1002/adma.202409390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) offers a promising approach to close the carbon cycle and reduce reliance on fossil fuels. However, traditional decoupled CO2RR processes involve energy-intensive CO2 capture, conversion, and product separation, which increases operational costs. Here, we report the development of a bismuth-poly(ionic liquid) (Bi-PIL) hybrid catalyst that exhibits exceptional electrocatalytic performance for CO2 conversion to formate. The Bi-PIL catalyst achieves over 90% Faradaic efficiency for formate over a wide potential range, even at low 15% v/v CO2 concentrations typical of industrial flue gas. The biphenyl in PIL backbone affords hydrophobicity while maintaining high ionic conductivity, effectively mitigating the flooding issues. The PIL layer plays a crucial role as a CO2 concentrator and co-catalyst that accelerates the CO2RR kinetics. Furthermore, we demonstrate the potential of Bi-PIL catalysts in a solid-state electrolyte (SSE) electrolyzer for the continuous and direct production of pure formic acid solutions from flue gas. Techno-economic analysis suggests that this integrated process can produce formic acid at a significantly reduced cost compared to the traditional decoupled approaches. This work presents a promising strategy to overcome the challenges associated with low-concentration CO2 utilization and streamline the production of valuable liquid fuels and chemicals from CO2.
Collapse
Affiliation(s)
- Geng Li
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China
| | - Chengyi Zhang
- School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Yong Liu
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Yun Song
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Weihua Guo
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Libei Huang
- Division of Science, Engineering and Health Study, School of Professional Education and Executive Development, The Hong Kong Polytechnic University (PolyU SPEED), Hong Kong, 999077, China
| | - Jianjun Su
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Qiang Zhang
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Yinger Xin
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Tanglue Feng
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Xiaohu Cao
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Mingming He
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Tsz Kin Kwok
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Jacky W Y Lam
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Zhong Jin
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ben Zhong Tang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Ziyun Wang
- School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China
| |
Collapse
|
12
|
Wu X, Ruan J, Chen L, Qi Z. Dihydroxyl-Cooperative 1,2,4-Triazole-Based Ionic Liquid for Robust Reversible CO 2 Absorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20342-20351. [PMID: 39311054 DOI: 10.1021/acs.langmuir.4c01171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
The development of aqueous absorbents for CO2 capture is significantly important to reduce global industrial gas emissions through high regeneration efficiency and low energy consumption. Herein, we newly designed and prepared a dihydroxylated ionic liquid (IL) bis(2-hydroxyethyl)dimethylammonium 1,2,4-triazole ([N1,1,2OH,2OH][TZ]) for highly efficient CO2 absorption through anion-cation cooperative interactions. A superior capacity of 1.33 mol of CO2 per mol of IL and excellent reversibility have been achieved by the introduction of dihydroxy sites on the ammonium-based Tz IL. 1H and 13C nuclear magnetic resonance, Fourier transform infrared, and quantum chemical calculations demonstrate bihydroxyl-cooperative absorption of CO2 via hydrogen bond interaction between the cation and anion of the IL. The theory calculation shows that IL displays a superlow reactive absorption enthalpy, favorable to the reversible CO2 absorption, which can maintain an initial absorption capacity of 98.5% with the cycle numbers of 100, implying the facile regeneration and superlow energy consumption. Thus, the functionalized ILs toward group cooperative gas absorption and excellent reversibility may open a door to designing new materials for enhancing CO2 absorption and utilization.
Collapse
Affiliation(s)
- Xinzi Wu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, China
| | - Jiawei Ruan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, China
| | - Lifang Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, China
| | - Zhiwen Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, China
| |
Collapse
|
13
|
Chae K, Mohamad NARC, Kim J, Won DI, Lin Z, Kim J, Kim DH. The promise of chiral electrocatalysis for efficient and sustainable energy conversion and storage: a comprehensive review of the CISS effect and future directions. Chem Soc Rev 2024; 53:9029-9058. [PMID: 39158537 DOI: 10.1039/d3cs00316g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The integration of chirality, specifically through the chirality-induced spin selectivity (CISS) effect, into electrocatalytic processes represents a pioneering approach for enhancing the efficiency of energy conversion and storage systems. This review delves into the burgeoning field of chiral electrocatalysis, elucidating the fundamental principles, historical development, theoretical underpinnings, and practical applications of the CISS effect across a spectrum of electrocatalytic reactions, including the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER). We explore the methodological advancements in inducing the CISS effect through structural and surface engineering and discuss various techniques for its measurement, from magnetic conductive atomic force microscopy (mc-AFM) to hydrogen peroxide titration. Furthermore, this review highlights the transformative potential of the CISS effect in addressing the key challenges of the NRR and CO2RR processes and in mitigating singlet oxygen formation in metal-air batteries, thereby improving their performance and durability. Through this comprehensive overview, we aim to underscore the significant role of incorporating chirality and spin polarization in advancing electrocatalytic technologies for sustainable energy applications.
Collapse
Affiliation(s)
- Kyunghee Chae
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Nur Aqlili Riana Che Mohamad
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Jeonghyeon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong-Il Won
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Zhiqun Lin
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Jeongwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong Ha Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| |
Collapse
|
14
|
Lu H, Wang J, Li G, Liao B, Zhang X, Hu X, Yu N, Chen L. Tailoring Cu-Based Electrocatalysts for Enhanced Electrochemical CO 2 Reduction to Alcohols: Structure-Selectivity Relationship. Inorg Chem 2024; 63:11935-11943. [PMID: 38869984 DOI: 10.1021/acs.inorgchem.3c04239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The use of CO2 as a feedstock for the production of carbon-based fuels and value-added chemicals offers a promising route toward carbon neutrality. In this study, two Cu-based electrocatalysts, namely, Cu24/N-C and Cu2/N-C, are successfully prepared by thermal treatment of Cu24 metal-organic polyhedron-loaded zeolitic imidazolate framework-8 (ZIF-8) nanocrystals (Cu24/ZIF-8) and Cu2 dinuclear compound-loaded ZIF-8 nanocrystals (Cu2/ZIF-8), respectively. Extensive structural and compositional analyses were conducted to confirm the formation of Cu nanocluster-loaded N-doped porous carbon supports in both Cu24/N-C and Cu2/N-C and Cu nanoparticles encapsulated by graphitic carbons in Cu2/N-C as well. These two Cu-based electrocatalysts exhibited different behaviors in the electrochemical CO2 reduction reaction (CO2RR). The Cu24/N-C electrocatalyst showed high selectivity for CO production, while Cu2/N-C showed a preference for alcohol generation. The excellent stability of Cu2/N-C over a 30 h continuous electrochemical reduction further highlights its potential for practical applications. The difference in electrocatalytic performance observed in the two catalysts for CO2RR was attributed to distinct catalytic sites associated with Cu nanoclusters and nanoparticles. This research reveals the significance of their structures and compositions for the development of highly selective electrocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- Haiyue Lu
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
| | - Jinfeng Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Gen Li
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
| | - Baicheng Liao
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
| | - Xiuli Zhang
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
| | - Xuefu Hu
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
| | - Nan Yu
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241002, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Liyong Chen
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu 233030, China
| |
Collapse
|
15
|
Han J, Bai X, Xu X, Bai X, Husile A, Zhang S, Qi L, Guan J. Advances and challenges in the electrochemical reduction of carbon dioxide. Chem Sci 2024; 15:7870-7907. [PMID: 38817558 PMCID: PMC11134526 DOI: 10.1039/d4sc01931h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
The electrocatalytic carbon dioxide reduction reaction (ECO2RR) is a promising way to realize the transformation of waste into valuable material, which can not only meet the environmental goal of reducing carbon emissions, but also obtain clean energy and valuable industrial products simultaneously. Herein, we first introduce the complex CO2RR mechanisms based on the number of carbons in the product. Since the coupling of C-C bonds is unanimously recognized as the key mechanism step in the ECO2RR for the generation of high-value products, the structural-activity relationship of electrocatalysts is systematically reviewed. Next, we comprehensively classify the latest developments, both experimental and theoretical, in different categories of cutting-edge electrocatalysts and provide theoretical insights on various aspects. Finally, challenges are discussed from the perspectives of both materials and devices to inspire researchers to promote the industrial application of the ECO2RR at the earliest.
Collapse
Affiliation(s)
- Jingyi Han
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xue Bai
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xiaoqin Xu
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xue Bai
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Anaer Husile
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Luoluo Qi
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| |
Collapse
|
16
|
Zhou D, Chen C, Zhang Y, Wang M, Han S, Dong X, Yao T, Jia S, He M, Wu H, Han B. Cooperation of Different Active Sites to Promote CO 2 Electroreduction to Multi-carbon Products at Ampere-Level. Angew Chem Int Ed Engl 2024; 63:e202400439. [PMID: 38345401 DOI: 10.1002/anie.202400439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Indexed: 03/01/2024]
Abstract
Electroreduction of CO2 to C2+ products provides a promising strategy for reaching the goal of carbon neutrality. However, achieving high selectivity of C2+ products at high current density remains a challenge. In this work, we designed and prepared a multi-sites catalyst, in which Pd was atomically dispersed in Cu (Pd-Cu). It was found that the Pd-Cu catalyst had excellent performance for producing C2+ products from CO2 electroreduction. The Faradaic efficiency (FE) of C2+ products could be maintained at approximately 80.8 %, even at a high current density of 0.8 A cm-2 for at least 20 hours. In addition, the FE of C2+ products was above 70 % at 1.4 A cm-2. Experiments and density functional theory (DFT) calculations revealed that the catalyst had three distinct catalytic sites. These three active sites allowed for efficient conversion of CO2, water dissociation, and CO conversion, ultimately leading to high yields of C2+ products.
Collapse
Affiliation(s)
- Dawei Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Chunjun Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- State Key Laboratory of Petroleum Molecular and Process engineering, SKLPMPE, Sinopec research institute of petroleum processing Co., LTD., Beijing, 100083, China
- East China Normal University, Shanghai, 200062, China
| | - Yichi Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Min Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Shitao Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xue Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Ting Yao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Shuaiqiang Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- State Key Laboratory of Petroleum Molecular and Process engineering, SKLPMPE, Sinopec research institute of petroleum processing Co., LTD., Beijing, 100083, China
- East China Normal University, Shanghai, 200062, China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- State Key Laboratory of Petroleum Molecular and Process engineering, SKLPMPE, Sinopec research institute of petroleum processing Co., LTD., Beijing, 100083, China
- East China Normal University, Shanghai, 200062, China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- State Key Laboratory of Petroleum Molecular and Process engineering, SKLPMPE, Sinopec research institute of petroleum processing Co., LTD., Beijing, 100083, China
- East China Normal University, Shanghai, 200062, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China
| |
Collapse
|