1
|
Fan LY, Li XT, Luo XX, Zhu B, Guan W. Data-Driven Prediction of Reactivity and Additive Selection for C(sp 2)-(Hetero)Atom Bond Couplings in an Adaptive Dynamic Homogeneous Catalysis. Chemistry 2025:e202500935. [PMID: 40261203 DOI: 10.1002/chem.202500935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
Under visible light-driven redox conditions, employing transition-metal catalysis provides a powerful platform for constructing C(sp2)-(hetero)atom bonds. Although these reactions are highly significant, they require precise optimization of reaction parameters. König, Ghosh, and colleagues introduced an adaptive dynamic homogeneous catalysis (AD-HoC) platform that furnishes robust, high-yield conditions for photocatalyzed cross-coupling reactions. The AD-HoC system eliminates the need to optimize catalysts, ligands, and bases, instead, it achieves C(sp2)-(hetero)atom bond coupling by merely altering additives and substrate molecules. Leveraging the predictability of reaction conditions within the AD-HoC system, machine learning offers a method to evaluate the reactivity of substrate combinations and the categories of additives. Our research integrates high-throughput quantum mechanical calculations with cheminformatics approaches to explore the reactivity of substrate combinations and the selection of additives within the AD-HoC system. Further data-driven analysis reveals that the electronic characteristics of electrophiles and the geometric characteristics of nucleophiles are key factors regulating reactivity within the AD-HoC system. Herein, we present an end-to-end tool for prediction starting from the SMILES (Simplified Molecular-Input Line-Entry System) representation. This work demonstrates the collaborative use of computational statistics and machine learning to predict the reactivity and reaction conditions of substrate combinations, thereby enhancing the precision and efficiency of synthetic processes.
Collapse
Affiliation(s)
- Li-Yang Fan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xue-Tao Li
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xi-Xi Luo
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Bo Zhu
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Wei Guan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
2
|
Zhou XS, Li ZQ, Qu WY, Zhang Z, Xiao WJ, Chen JR. Direct Asymmetric α-Alkylation of β-Ketocarbonyl Compounds with Simple Olefins by Photoredox-Nickel-Hydrogen Atom Transfer Triple Catalysis. Angew Chem Int Ed Engl 2025; 64:e202424915. [PMID: 39935403 DOI: 10.1002/anie.202424915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/13/2025]
Abstract
Although the asymmetric α-alkylation of carbonyl compounds with activated olefins has already been established, extending this methodology to less activated or nonactivated olefins remains a significant challenge due to the polarity mismatch in these ionic processes. An alternative approach involves the activation of the parent carbonyl compounds into electrophilic α-carbonyl radicals, which could potentially overcome this limitation. However, the lack of efficient catalytic systems has impeded the wide adoption of this strategy, particularly in realm of the catalytic asymmetric reactions. Here, we present a cooperative triple catalytic system that integrates photoredox, chiral Lewis acid, and hydrogen atom transfer (HAT) catalysts to achieve a direct asymmetric α-alkylation of β-ketocarbonyl compounds using simple olefins as alkylating agents. By combining a multifunctional chiral nickel Lewis acid with an iridium photoredox catalyst and a thiophenol catalyst under visible light, we have developed a highly efficient process that is temporally synchronized to facilitate a novel mechanism of electron and hydrogen transfer. This triple catalytic approach enables the intermolecular coupling of β-ketocarbonyl compounds with both less and non-activated olefins. This redox-neutral protocol provides an atom- and step-economic route to enantioselectively synthesize high-value molecules featuring an all-carbon quaternary stereocenter from feedstock chemicals, while only consuming photons.
Collapse
Affiliation(s)
- Xue-Song Zhou
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Zi-Qing Li
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Wen-Yuan Qu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Zhihan Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei, 430083, China
| | - Jia-Rong Chen
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei, 430083, China
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
3
|
Chen X, Qian BC. Benzothiazolines Acting as Carbanion and Radical Transfer Reagents in Carbon-Carbon Bond Construction. Molecules 2025; 30:1711. [PMID: 40333676 PMCID: PMC12029269 DOI: 10.3390/molecules30081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 05/09/2025] Open
Abstract
Traditionally employed as hydrogenation reagents, benzothiazolines have emerged as versatile carbanion and radical transfer reagents, playing a vital role in the construction of various carbon-carbon bonds. The cutting-edge progress in photochemistry and radical chemistry have prompted the study of visible light-driven radical reactions, bringing benzothiazolines into a vibrant focus. Their chemical processes have been uncovered to encompass a variety of activation mechanisms, with five distinct modes having been identified. This work reviews the innovative applications of benzothiazolines as donors of alkyl or acyl groups, achieving hydroalkylation or hydroacylation and alkyl or acyl substitution. By examining their diverse activation mechanisms, this review highlights the potential of benzothiazolines serving as alkyl and acyl groups for further research and development. Moreover, this review will offer exemplary applications and inspiration to synthetic chemists, contributing to the ongoing evolution of benzothiazolines utility in organic synthesis.
Collapse
Affiliation(s)
| | - Bao-Chen Qian
- College of Medical Engineering, Jining Medical University, Jining 272000, China
| |
Collapse
|
4
|
Kong Z, Zhao X, Li WC, Wang JY, Li S, Liu Z, Dong XY, Wang R, Huang RW, Zang SQ. Cluster Engineering in Water Catalytic Reactions: Synthesis, Structure-Activity Relationship and Mechanism. ACS APPLIED MATERIALS & INTERFACES 2025; 17:67-90. [PMID: 39718441 DOI: 10.1021/acsami.4c16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Four fundamental reactions are essential to harnessing energy from water sustainably: oxidation reduction reaction (ORR), oxygen reduction reaction (OER), hydrogen oxidation reaction (HOR), and hydrogen evolution reaction (HER). This review summarizes the research advancements in the electrocatalytic reaction of metal nanoclusters for water splitting. It covers various types of nanoclusters, particularly those at the size level, that enhance these catalytic reactions. The synthesis of cluster-based catalysts and the elucidation of the structure-activity relationships and reaction mechanisms are discussed. Emphasis is placed on utilizing atomically precise cluster materials and the interplay between the carrier and cluster in water catalysis, especially for applying catalytic engineering principles (such as synergy, coordination, heterointerface, and lattice strain engineering) to understand structure-activity relationships and catalytic mechanisms for cluster-based catalysts. Finally, the field of cluster water catalysis is summarized and prospected. We believe that developing cluster-based catalysts with high activity, excellent stability, and high selectivity will significantly promote the development of renewable energy conversion reactions.
Collapse
Affiliation(s)
- Zhijie Kong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xue Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wu-Chu Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jia-Yun Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Si Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhijuan Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Yan Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ren-Wu Huang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Pradhan S, Satav D, Dutta S, Maity B, Cavallo L, Sundararaju B. Reductive coupling of allenyl/allyl carbonate with alkyne under dual cobalt-photoredox catalysis. Nat Commun 2024; 15:10421. [PMID: 39613777 DOI: 10.1038/s41467-024-54718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Skipped dienes are among the most prevalent motifs in a vast array of natural products, medicinal compounds, and fatty acids. Herein, we disclose a straightforward one-step reductive protocol under Co/PC for the synthesis of diverse 1,4-dienes with excellent regio- and stereoselectivity. The protocol employs allenyl or allyl carbonate as π-allyl source, allowing for the direct synthesis of skipped diene with a broad range of alkynes including terminal alkynes, propargylic alcohols, and internal alkynes. The method also demonstrated the biomimetic homologation of natural terpenols into synthetic counterparts via iterative allylation of three-carbon allyl units, employing propargylic alcohol as a readily available alkyne source. Experimental studies, control experiments, and DFT calculations suggest the dual catalytic process generates 1,3-diene from allenyl carbonate, followed by proton and electron transfer leading to Co(II)-π-allyl species prior to the alkyne coupling. The catalytic cycle transitions through Co(II), Co(I), and Co(III).
Collapse
Affiliation(s)
- Subhankar Pradhan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Dhananjay Satav
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Sayan Dutta
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Bholanath Maity
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
6
|
Kumar S, Dutta S, Cavallo L, Maity B. A Comprehensive Multireference Study of Excited-State Ni-Br Bond Homolysis in (dtbbpy)Ni II(aryl)(Br). Inorg Chem 2024; 63:20361-20371. [PMID: 39417647 DOI: 10.1021/acs.inorgchem.4c02572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The mechanism of visible light-driven Ni-C(aryl) bond homolysis in (2,2'-bipyridine)NiII(aryl)(halide) complexes, which play a crucial role in metallaphotoredox catalysis for cross-coupling reactions, has been well studied. Differently, the theoretical understanding of Ni-halide bond homolysis remains limited. In this study, we introduce a novel electronic structural framework to elucidate the mechanisms underlying photoinduced Ni-Br bond rupture in the (dtbbpy)NiII(aryl)(Br) complex. Using multireference ab initio calculations, we characterized the excited state potential energy surfaces corresponding to metal-to-ligand charge transfer (MLCT) and ligand-to-metal charge transfer (LMCT). Our calculations reveal that the Ni-Br dissociation, triggered by an external photocatalyst, begins with the promotion of Ni(II) to a 1MLCT excited state. This state undergoes intersystem crossing with repulsive triplet surfaces corresponding to the 3MLCT and Br-to-Ni 3LMCT states, resulting in Ni-Br bond breaking via the Dexter energy transfer mechanism. In the absence of a photocatalyst, the photoexcited Ni(II) favors Ni-C(aryl) homolysis, whereas the presence of a photocatalyst promotes Ni-Br dissociation. The Ni(III) species, resulting from the oxidation of Ni(II) by the photocatalyst, was found to be unproductive toward Ni-Br or Ni-C(aryl) activation.
Collapse
Affiliation(s)
- Sanchit Kumar
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sayan Dutta
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bholanath Maity
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
7
|
Bodiuzzaman M, Murugesan K, Yuan P, Maity B, Sagadevan A, Malenahalli H N, Wang S, Maity P, Alotaibi MF, Jiang DE, Abulikemu M, Mohammed OF, Cavallo L, Rueping M, Bakr OM. Modulating Decarboxylative Oxidation Photocatalysis by Ligand Engineering of Atomically Precise Copper Nanoclusters. J Am Chem Soc 2024; 146:26994-27005. [PMID: 39297671 DOI: 10.1021/jacs.4c08688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Copper nanoclusters (Cu NCs) characterized by their well-defined electronic and optical properties are an ideal platform for organic photocatalysis and exploring atomic-level behaviors. However, their potential as greener, efficient catalysts for challenging reactions like decarboxylative oxygenation under mild conditions remains unexplored. Herein, we present Cu13(Nap)3(PPh3)7H10 (hereafter Cu13Nap), protected by 1-naphthalene thiolate (Nap), which performs well in decarboxylative oxidation (90% yield) under photochemical conditions. In comparison, the isostructural Cu13(DCBT)3(PPh3)7H10 (hereafter Cu13DCBT), stabilized by 2,4-dichlorobenzenethiolate (DCBT), yields only 28%, and other previously reported Cu NCs (Cu28, Cu29, Cu45, Cu57, and Cu61) yield in the range of 6-18%. The introduction of naphthalene thiolate to the surface of Cu13 NCs influences their electronic structure and charge transfer in the ligand shell, enhancing visible light absorption and catalytic performance. Density functional theory (DFT) and experimental evidence suggest that the reaction proceeds primarily through an energy transfer mechanism. The energy transfer pathway is uncommon in the context of previous reports for decarboxylative oxidation reactions. Our findings suggest that strategically manipulating ligands holds significant potential for creating composite active sites on atomically precise copper NCs, resulting in enhanced catalytic efficacy and selectivity across various challenging reactions.
Collapse
Affiliation(s)
- Mohammad Bodiuzzaman
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kathiravan Murugesan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Peng Yuan
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bholanath Maity
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Arunachalam Sagadevan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Naveen Malenahalli H
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Song Wang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Partha Maity
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohammed F Alotaibi
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States
| | - Mutalifu Abulikemu
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Omar F Mohammed
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Osman M Bakr
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
8
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
9
|
Sharma AK, Maseras F. The Subtle Mechanism of Nickel-Photocatalyzed C(sp 3)-H Cross-Coupling. Inorg Chem 2024; 63:13801-13806. [PMID: 39018463 DOI: 10.1021/acs.inorgchem.4c01763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
This computational study revises and reformulates the mechanism for the cross-coupling reaction between chlorobenzene and tetrahydrofuran catalyzed by a Ni complex with the assistance of an Ir photocatalyst. This is a representative process of transition-metal photocatalysis, and variations of it have been reported by different experimental authors. It has been also the subject of previous computational studies, which we revise and extend. Density functional theory (DFT) calculations and microkinetic modeling indicate that the most efficient mechanism takes place through an energy-transfer step and involves a NiIII complex.
Collapse
Affiliation(s)
- Akhilesh K Sharma
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, Tarragona 43007, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, Tarragona 43007, Spain
| |
Collapse
|
10
|
Sonawane SC, Gourkhede R, Saini P, Ramakrishnan S, Balakrishna MS. Cu I-amidobis(phosphine) catalyzed C(sp 3)-C(sp 3) direct homo- and hetero-coupling of unactivated alkanes via C(sp 3)-H activation. Chem Commun (Camb) 2024; 60:6055-6058. [PMID: 38780035 DOI: 10.1039/d4cc01119h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Herein, we present a CuI-dimer, [CuI{Ph2PC6H4C(O)NC6H4PPh2-o}]2, which catalyzed direct C(sp3)-H homocoupling of benzyl and cycloalkane derivatives with excellent yields and regio-selectivity. The method is very simple and tolerates various functionalities. Synergistic metal-ligand cooperativity was observed in Cu-N bond cleavage and protonation of nitrogen, and facilitates a bifunctional pathway, minimising the free energy corrugation for catalytic intermediates.
Collapse
Affiliation(s)
- Sachin C Sonawane
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India.
| | - Rani Gourkhede
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India.
| | - Prateek Saini
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India.
| | - Srinivasan Ramakrishnan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India.
| | - Maravanji S Balakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India.
| |
Collapse
|
11
|
Cusumano AQ, Chaffin BC, Doyle AG. Mechanism of Ni-Catalyzed Photochemical Halogen Atom-Mediated C(sp 3)-H Arylation. J Am Chem Soc 2024; 146:15331-15344. [PMID: 38778454 PMCID: PMC11246173 DOI: 10.1021/jacs.4c03099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Within the context of Ni photoredox catalysis, halogen atom photoelimination from Ni has emerged as a fruitful strategy for enabling hydrogen atom transfer (HAT)-mediated C(sp3)-H functionalization. Despite the numerous synthetic transformations invoking this paradigm, a unified mechanistic hypothesis that is consistent with experimental findings on the catalytic systems and accounts for halogen radical formation and facile C(sp2)-C(sp3) bond formation remains elusive. We employ kinetic analysis, organometallic synthesis, and computational investigations to decipher the mechanism of a prototypical Ni-catalyzed photochemical C(sp3)-H arylation reaction. Our findings revise the previous mechanistic proposals, first by examining the relevance of SET and EnT processes from Ni intermediates relevant to the HAT-based arylation reaction. Our investigation highlights the ability for blue light to promote efficient Ni-C(sp2) bond homolysis from cationic NiIII and C(sp2)-C(sp3) reductive elimination from bipyridine NiII complexes. However interesting, the rates and selectivities of these processes do not account for the productive catalytic pathway. Instead, our studies support a mechanism that involves halogen atom evolution from in situ generated NiII dihalide intermediates, radical capture by a NiII(aryl)(halide) resting state, and key C-C bond formation from NiIII. Oxidative addition to NiI, as opposed to Ni0, and rapid NiIII/NiI comproportionation play key roles in this process. The findings presented herein offer fundamental insight into the reactivity of Ni in the broader context of catalysis.
Collapse
Affiliation(s)
- Alexander Q Cusumano
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Braden C Chaffin
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Abigail G Doyle
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
12
|
Wenzel JO, Werner J, Allgaier A, van Slageren J, Fernández I, Unterreiner AN, Breher F. Visible-Light Activation of Diorganyl Bis(pyridylimino) Isoindolide Aluminum(III) Complexes and Their Organometallic Radical Reactivity. Angew Chem Int Ed Engl 2024; 63:e202402885. [PMID: 38511969 DOI: 10.1002/anie.202402885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
We report on the synthesis and characterization of a series of (mostly) air-stable diorganyl bis(pyridylimino) isoindolide (BPI) aluminum complexes and their chemistry upon visible-light excitation. The redox non-innocent BPI pincer ligand allows for efficient charge transfer homolytic processes of the title compounds. This makes them a universal platform for the generation of carbon-centered radicals. The photo-induced homolytic cleavage of the Al-C bonds was investigated by means of stationary and transient UV/Vis spectroscopy, spin trapping experiments, as well as EPR and NMR spectroscopy. The experimental findings were supported by quantum chemical calculations. Reactivity studies enabled the utilization of the aluminum complexes as reactants in tin-free Giese-type reactions and carbonyl alkylations under ambient conditions, which both indicated radical-polar crossover behavior. A deeper understanding of the physical fundamentals and photochemical process was provided, furnishing in turn a new strategy to control the reactivity of bench-stable aluminum organometallics.
Collapse
Affiliation(s)
- Jonas O Wenzel
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry (AOC), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Johannes Werner
- Karlsruhe Institute of Technology (KIT), Institute of Physical Chemistry (IPC), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Alexander Allgaier
- University of Stuttgart, Institute of Physical Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Joris van Slageren
- University of Stuttgart, Institute of Physical Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Israel Fernández
- Universidad Complutense de Madrid, Facultad de Ciencias Químicas, 28040, Madrid, Spain
| | - Andreas-Neil Unterreiner
- Karlsruhe Institute of Technology (KIT), Institute of Physical Chemistry (IPC), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Frank Breher
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry (AOC), Engesserstraße 15, 76131, Karlsruhe, Germany
| |
Collapse
|
13
|
Tsushima S, Kretzschmar J, Doi H, Okuwaki K, Kaneko M, Mochizuki Y, Takao K. Towards tailoring hydrophobic interaction with uranyl(VI) oxygen for C-H activation. Chem Commun (Camb) 2024; 60:4769-4772. [PMID: 38563824 DOI: 10.1039/d4cc01030b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bovine serum albumin (BSA) has a uranyl(VI) binding hotspot where uranium is tightly bound by three carboxylates. Uranyl oxygen is "soaked" into the hydrophobic core of BSA. Isopropyl hydrogen of Val is trapped near UO22+ and upon photoexcitation, C-H bond cleavage is initiated. A unique hydrophobic contact with "yl"-oxygen, as observed here, can be used to induce C-H activation.
Collapse
Affiliation(s)
- Satoru Tsushima
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, 01328, Germany.
- International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Jérôme Kretzschmar
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, 01328, Germany.
| | - Hideo Doi
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, Tokyo, 171-8501, Japan
| | - Koji Okuwaki
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, Tokyo, 171-8501, Japan
| | - Masashi Kaneko
- Department of Chemistry, Osaka University, Osaka, 560-0043, Japan
| | - Yuji Mochizuki
- Department of Chemistry, Osaka University, Osaka, 560-0043, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
| | - Koichiro Takao
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| |
Collapse
|
14
|
Karpova L, Daniel M, Kancherla R, Muralirajan K, Maity B, Rueping M. Excited-State Nickel-Catalyzed Amination of Aryl Bromides: Synthesis of Diphenylamines and Primary Anilines. Org Lett 2024; 26:1657-1661. [PMID: 38381879 DOI: 10.1021/acs.orglett.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Excited-state nickel-catalyzed C-N cross-coupling of aryl bromides with sodium azide enables the synthesis of diarylamines and primary anilines under mild reaction conditions. The oxidative addition of electron-rich aryl bromides with low-valent Ni under the photochemical conditions is endothermic. Herein, we demonstrate a light-mediated nickel-catalyzed reaction of electronically rich aryl bromides that yields diarylamines, while the reaction with electron-deficient aryl bromides gives access to anilines at room temperature.
Collapse
Affiliation(s)
- Lidia Karpova
- Kaust Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Matěj Daniel
- Kaust Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rajesh Kancherla
- Kaust Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Krishnamoorthy Muralirajan
- Kaust Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bholanath Maity
- Kaust Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- Kaust Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
15
|
Huang C, Qin YS, Wang CL, Xiao P, Tang S, Liu HJ, Wei Z, Cai H. Visible light-induced C(sp 3)-H azolation of ethers via radical-polar crossover. Chem Commun (Camb) 2024; 60:2669-2672. [PMID: 38351890 DOI: 10.1039/d3cc06210d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Reported herein is a photochemical strategy for C(sp3)-H azolation of ethers via a hydrogen-atom transfer and radical-polar crossover process, offering efficient access to valuable N-alkylated azoles under visible-light irradiation. The protocol is metal-free and photocatalyst-free, and exhibits good to excellent yields and broad substrate scope with regard to azoles. EPR experiments provide evidence for the formation of intermediates formed in situ.
Collapse
Affiliation(s)
- Cheng Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| | - Yu-Shu Qin
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| | - Chen-Lu Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| | - Peng Xiao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| | - Sheng Tang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| | - Hong-Jun Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| |
Collapse
|
16
|
Kancherla R, Muralirajan K, Dutta S, Pal K, Li B, Maity B, Cavallo L, Rueping M. Photoexcitation of Distinct Divalent Palladium Complexes in Cross-Coupling Amination Under Air. Angew Chem Int Ed Engl 2024; 63:e202314508. [PMID: 37956272 DOI: 10.1002/anie.202314508] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
The development of metal complexes that function as both photocatalyst and cross-coupling catalyst remains a challenging research topic. So far, progress has been shown in palladium(0) excited-state transition metal catalysis for the construction of carbon-carbon bonds where the oxidative addition of alkyl/aryl halides to zero-valent palladium (Pd0 ) is achievable at room temperature. In contrast, the analogous process with divalent palladium (PdII ) is uphill and endothermic. For the first time, we report that divalent palladium can act as a light-absorbing species that undergoes double excitation to realize carbon-nitrogen (C-N) cross-couplings under air. Differently substituted aryl halides can be applied in the mild, and selective cross-coupling amination using palladium acetate as both photocatalyst and cross-coupling catalyst at room temperature. Density functional theory studies supported by mechanistic investigations provide insight into the reaction mechanism.
Collapse
Affiliation(s)
- Rajesh Kancherla
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Krishnamoorthy Muralirajan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sayan Dutta
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kuntal Pal
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Bo Li
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Bholanath Maity
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
17
|
Mandal T, Das S, Maji R, De Sarkar S. Visible-Light-Induced Hydrogen Atom Transfer En Route to Exocylic Alkenylation of Cyclic Ethers Enabled by Electron Donor-Acceptor Complex. Org Lett 2023; 25:7727-7732. [PMID: 37844302 DOI: 10.1021/acs.orglett.3c03099] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
An electron donor-acceptor (EDA)-triggered hydrogen atom transfer (HAT) process is developed for the efficient generation of an α-alkoxy radical from cyclic ethers to synthesize exocyclic alkenylated ethers with exclusive E-selectivity. A judiciously chosen donor-acceptor pair (DABCO and maleimide) serves as the desired HAT reagent under visible light irradiation without using any photocatalyst or peroxide. A wide variety of substrates were explored to demonstrate the diverse applicability and practical viability of this cross-dehydrogenative transformation. Detailed mechanistic studies revealed a radical reaction pathway under the oxidative environment.
Collapse
Affiliation(s)
- Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sanju Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Rohan Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| |
Collapse
|